pvslocalresidual.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef EWOMS_PVS_LOCAL_RESIDUAL_HH
29#define EWOMS_PVS_LOCAL_RESIDUAL_HH
30
31#include "pvsproperties.hh"
32
35
36#include <opm/material/common/Valgrind.hpp>
37
38namespace Opm {
39
46template <class TypeTag>
47class PvsLocalResidual : public GetPropType<TypeTag, Properties::DiscLocalResidual>
48{
55
56 enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
57 enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
58 enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
59 enum { conti0EqIdx = Indices::conti0EqIdx };
60
61 enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
63
64 enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
66
67 using Toolbox = Opm::MathToolbox<Evaluation>;
68
69public:
73 template <class LhsEval>
74 void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
75 const ElementContext& elemCtx,
76 unsigned dofIdx,
77 unsigned timeIdx,
78 unsigned phaseIdx) const
79 {
80 const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
81 const auto& fs = intQuants.fluidState();
82
83 // compute storage term of all components within all phases
84 for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
85 unsigned eqIdx = conti0EqIdx + compIdx;
86 storage[eqIdx] +=
87 Toolbox::template decay<LhsEval>(fs.molarity(phaseIdx, compIdx))
88 * Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
89 * Toolbox::template decay<LhsEval>(intQuants.porosity());
90 }
91
92 EnergyModule::addPhaseStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx), phaseIdx);
93 }
94
98 template <class LhsEval>
99 void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
100 const ElementContext& elemCtx,
101 unsigned dofIdx,
102 unsigned timeIdx) const
103 {
104 storage = 0.0;
105 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
106 addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx);
107
108 EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx));
109 }
110
114 void computeFlux(RateVector& flux,
115 const ElementContext& elemCtx,
116 unsigned scvfIdx,
117 unsigned timeIdx) const
118 {
119 flux = 0.0;
120 addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
121 Opm::Valgrind::CheckDefined(flux);
122
123 addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
124 Opm::Valgrind::CheckDefined(flux);
125 }
126
130 void addAdvectiveFlux(RateVector& flux,
131 const ElementContext& elemCtx,
132 unsigned scvfIdx,
133 unsigned timeIdx) const
134 {
135 const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
136
137 unsigned focusDofIdx = elemCtx.focusDofIndex();
138 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
139 // data attached to upstream and the downstream DOFs
140 // of the current phase
141 unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
142 const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
143
144 // this is a bit hacky because it is specific to the element-centered
145 // finite volume scheme. (N.B. that if finite differences are used to
146 // linearize the system of equations, it does not matter.)
147 if (upIdx == focusDofIdx) {
148 Evaluation tmp =
149 up.fluidState().molarDensity(phaseIdx)
150 * extQuants.volumeFlux(phaseIdx);
151
152 for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
153 flux[conti0EqIdx + compIdx] +=
154 tmp*up.fluidState().moleFraction(phaseIdx, compIdx);
155 }
156 }
157 else {
158 Evaluation tmp =
159 Toolbox::value(up.fluidState().molarDensity(phaseIdx))
160 * extQuants.volumeFlux(phaseIdx);
161
162 for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
163 flux[conti0EqIdx + compIdx] +=
164 tmp*Toolbox::value(up.fluidState().moleFraction(phaseIdx, compIdx));
165 }
166 }
167 }
168
169 EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
170 }
171
175 void addDiffusiveFlux(RateVector& flux,
176 const ElementContext& elemCtx,
177 unsigned scvfIdx,
178 unsigned timeIdx) const
179 {
180 DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
181 EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
182 }
183
187 void computeSource(RateVector& source,
188 const ElementContext& elemCtx,
189 unsigned dofIdx,
190 unsigned timeIdx) const
191 {
192 Opm::Valgrind::SetUndefined(source);
193 elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
194 Opm::Valgrind::CheckDefined(source);
195 }
196};
197
198} // namespace Opm
199
200#endif
Provides the auxiliary methods required for consideration of the diffusion equation.
Definition: diffusionmodule.hh:47
Provides the auxiliary methods required for consideration of the energy equation.
Definition: energymodule.hh:48
Element-wise calculation of the local residual for the compositional multi-phase primary variable swi...
Definition: pvslocalresidual.hh:48
void addPhaseStorage(Dune::FieldVector< LhsEval, numEq > &storage, const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx, unsigned phaseIdx) const
Adds the amount all conservation quantities (e.g. phase mass) within a single fluid phase.
Definition: pvslocalresidual.hh:74
void computeStorage(Dune::FieldVector< LhsEval, numEq > &storage, const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx) const
Evaluate the amount all conservation quantities (e.g. phase mass) within a finite sub-control volume.
Definition: pvslocalresidual.hh:99
void computeSource(RateVector &source, const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx) const
Calculate the source term of the equation.
Definition: pvslocalresidual.hh:187
void addDiffusiveFlux(RateVector &flux, const ElementContext &elemCtx, unsigned scvfIdx, unsigned timeIdx) const
Adds the diffusive flux at a given flux integration point.
Definition: pvslocalresidual.hh:175
void addAdvectiveFlux(RateVector &flux, const ElementContext &elemCtx, unsigned scvfIdx, unsigned timeIdx) const
Add the advective mass flux at a given flux integration point.
Definition: pvslocalresidual.hh:130
void computeFlux(RateVector &flux, const ElementContext &elemCtx, unsigned scvfIdx, unsigned timeIdx) const
Evaluates the total mass flux of all conservation quantities over a face of a sub-control volume.
Definition: pvslocalresidual.hh:114
Classes required for molecular diffusion.
Contains the classes required to consider energy as a conservation quantity in a multi-phase module.
Definition: blackoilboundaryratevector.hh:37
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:242
Declares the properties required for the compositional multi-phase primary variable switching model.