BlackoilWellModel_impl.hpp
Go to the documentation of this file.
1/*
2 Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics.
3 Copyright 2016 - 2018 Equinor ASA.
4 Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
5 Copyright 2016 - 2018 Norce AS
6
7 This file is part of the Open Porous Media project (OPM).
8
9 OPM is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
13
14 OPM is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with OPM. If not, see <http://www.gnu.org/licenses/>.
21*/
22
23#ifndef OPM_BLACKOILWELLMODEL_IMPL_HEADER_INCLUDED
24#define OPM_BLACKOILWELLMODEL_IMPL_HEADER_INCLUDED
25
26// Improve IDE experience
27#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
28#include <config.h>
30#endif
31
32#include <opm/grid/utility/cartesianToCompressed.hpp>
33
34#include <opm/input/eclipse/Schedule/Network/Balance.hpp>
35#include <opm/input/eclipse/Schedule/Network/ExtNetwork.hpp>
36#include <opm/input/eclipse/Schedule/Well/PAvgDynamicSourceData.hpp>
37#include <opm/input/eclipse/Schedule/Well/WellMatcher.hpp>
38#include <opm/input/eclipse/Schedule/Well/WellTestConfig.hpp>
39#include <opm/input/eclipse/Schedule/Well/WellEconProductionLimits.hpp>
40
41#include <opm/input/eclipse/Units/UnitSystem.hpp>
42
50
51#ifdef RESERVOIR_COUPLING_ENABLED
56#endif
57
60
61#if COMPILE_GPU_BRIDGE
63#endif
64
65#include <algorithm>
66#include <cassert>
67#include <iomanip>
68#include <utility>
69#include <optional>
70
71#include <fmt/format.h>
72
73namespace Opm {
74 template<typename TypeTag>
77 : WellConnectionModule(*this, simulator.gridView().comm())
78 , BlackoilWellModelGeneric<Scalar, IndexTraits>(simulator.vanguard().schedule(),
79 gaslift_,
80 network_,
81 simulator.vanguard().summaryState(),
82 simulator.vanguard().eclState(),
83 FluidSystem::phaseUsage(),
84 simulator.gridView().comm())
85 , simulator_(simulator)
86 , guide_rate_handler_{
87 *this,
88 simulator.vanguard().schedule(),
89 simulator.vanguard().summaryState(),
90 simulator.vanguard().grid().comm()
91 }
92 , gaslift_(this->terminal_output_)
93 , network_(*this)
94 {
95 local_num_cells_ = simulator_.gridView().size(0);
96
97 // Number of cells the global grid view
98 global_num_cells_ = simulator_.vanguard().globalNumCells();
99
100 {
101 auto& parallel_wells = simulator.vanguard().parallelWells();
102
103 this->parallel_well_info_.reserve(parallel_wells.size());
104 for( const auto& name_bool : parallel_wells) {
105 this->parallel_well_info_.emplace_back(name_bool, grid().comm());
106 }
107 }
108
110 Parameters::Get<Parameters::AlternativeWellRateInit>();
111
112 using SourceDataSpan =
113 typename PAvgDynamicSourceData<Scalar>::template SourceDataSpan<Scalar>;
114
116 [this](const std::size_t globalIndex)
117 { return this->compressedIndexForInterior(globalIndex); },
118 [this](const int localCell, SourceDataSpan sourceTerms)
119 {
120 using Item = typename SourceDataSpan::Item;
121
122 const auto* intQuants = this->simulator_.model()
123 .cachedIntensiveQuantities(localCell, /*timeIndex = */0);
124 const auto& fs = intQuants->fluidState();
125
126 sourceTerms
127 .set(Item::PoreVol, intQuants->porosity().value() *
128 this->simulator_.model().dofTotalVolume(localCell))
129 .set(Item::Depth, this->depth_[localCell]);
130
131 constexpr auto io = FluidSystem::oilPhaseIdx;
132 constexpr auto ig = FluidSystem::gasPhaseIdx;
133 constexpr auto iw = FluidSystem::waterPhaseIdx;
134
135 // Ideally, these would be 'constexpr'.
136 const auto haveOil = FluidSystem::phaseIsActive(io);
137 const auto haveGas = FluidSystem::phaseIsActive(ig);
138 const auto haveWat = FluidSystem::phaseIsActive(iw);
139
140 auto weightedPhaseDensity = [&fs](const auto ip)
141 {
142 return fs.saturation(ip).value() * fs.density(ip).value();
143 };
144
145 if (haveOil) { sourceTerms.set(Item::Pressure, fs.pressure(io).value()); }
146 else if (haveGas) { sourceTerms.set(Item::Pressure, fs.pressure(ig).value()); }
147 else { sourceTerms.set(Item::Pressure, fs.pressure(iw).value()); }
148
149 // Strictly speaking, assumes SUM(s[p]) == 1.
150 auto rho = 0.0;
151 if (haveOil) { rho += weightedPhaseDensity(io); }
152 if (haveGas) { rho += weightedPhaseDensity(ig); }
153 if (haveWat) { rho += weightedPhaseDensity(iw); }
154
155 sourceTerms.set(Item::MixtureDensity, rho);
156 }
157 );
158 }
159
160 template<typename TypeTag>
161 void
163 init()
164 {
165 extractLegacyCellPvtRegionIndex_();
166 extractLegacyDepth_();
167
168 gravity_ = simulator_.problem().gravity()[2];
169
170 this->initial_step_ = true;
171
172 // add the eWoms auxiliary module for the wells to the list
173 simulator_.model().addAuxiliaryModule(this);
174
175 is_cell_perforated_.resize(local_num_cells_, false);
176 }
177
178
179 template<typename TypeTag>
180 void
182 initWellContainer(const int reportStepIdx)
183 {
184 const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
185 + ScheduleEvents::NEW_WELL;
186 const auto& events = this->schedule()[reportStepIdx].wellgroup_events();
187 for (auto& wellPtr : this->well_container_) {
188 const bool well_opened_this_step = this->report_step_starts_ &&
189 events.hasEvent(wellPtr->name(),
190 effective_events_mask);
191 wellPtr->init(this->depth_, this->gravity_,
192 this->B_avg_, well_opened_this_step);
193 }
194 }
195
196 template<typename TypeTag>
197 void
199 beginReportStep(const int timeStepIdx)
200 {
201 this->groupStateHelper().setReportStep(timeStepIdx);
202 this->report_step_starts_ = true;
203 this->report_step_start_events_ = this->schedule()[timeStepIdx].wellgroup_events();
204
205 this->rateConverter_ = std::make_unique<RateConverterType>
206 (std::vector<int>(this->local_num_cells_, 0));
207
208 {
209 // WELPI scaling runs at start of report step.
210 const auto enableWellPIScaling = true;
211 this->initializeLocalWellStructure(timeStepIdx, enableWellPIScaling);
212 }
213
214 this->initializeGroupStructure(timeStepIdx);
215
216 const auto& comm = this->simulator_.vanguard().grid().comm();
217
219 {
220 // Create facility for calculating reservoir voidage volumes for
221 // purpose of RESV controls.
222 this->rateConverter_->template defineState<ElementContext>(this->simulator_);
223
224 // Update VFP properties.
225 {
226 const auto& sched_state = this->schedule()[timeStepIdx];
227
228 this->vfp_properties_ = std::make_unique<VFPProperties<Scalar, IndexTraits>>
229 (sched_state.vfpinj(), sched_state.vfpprod(), this->wellState());
230 }
231 }
232 OPM_END_PARALLEL_TRY_CATCH("beginReportStep() failed: ", comm)
233
234 // Store the current well and group states in order to recover in
235 // the case of failed iterations
236 this->commitWGState();
237
238 this->wellStructureChangedDynamically_ = false;
239 }
240
241
242
243
244
245 template <typename TypeTag>
246 void
248 initializeLocalWellStructure(const int reportStepIdx,
249 const bool enableWellPIScaling)
250 {
251 auto logger_guard = this->groupStateHelper().pushLogger();
252 auto& local_deferredLogger = this->groupStateHelper().deferredLogger();
253
254 const auto& comm = this->simulator_.vanguard().grid().comm();
255
256 // Wells_ecl_ holds this rank's wells, both open and stopped/shut.
257 this->wells_ecl_ = this->getLocalWells(reportStepIdx);
258 this->local_parallel_well_info_ =
259 this->createLocalParallelWellInfo(this->wells_ecl_);
260
261 // At least initializeWellState() might be throw an exception in
262 // UniformTabulated2DFunction. Playing it safe by extending the
263 // scope a bit.
265 {
266 this->initializeWellPerfData();
267 this->initializeWellState(reportStepIdx);
268 this->wbp_.initializeWBPCalculationService();
269
270 if (this->param_.use_multisegment_well_ && this->anyMSWellOpenLocal()) {
271 this->wellState().initWellStateMSWell(this->wells_ecl_, &this->prevWellState());
272 }
273
274 this->initializeWellProdIndCalculators();
275
276 if (enableWellPIScaling && this->schedule()[reportStepIdx].events()
277 .hasEvent(ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX))
278 {
279 this->runWellPIScaling(reportStepIdx, local_deferredLogger);
280 }
281 }
282 OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger,
283 "Failed to initialize local well structure: ",
284 this->terminal_output_, comm)
285 }
286
287
288
289
290
291 template <typename TypeTag>
292 void
294 initializeGroupStructure(const int reportStepIdx)
295 {
296 const auto& comm = this->simulator_.vanguard().grid().comm();
297
299 {
300 const auto& fieldGroup =
301 this->schedule().getGroup("FIELD", reportStepIdx);
302
303 this->groupStateHelper().setCmodeGroup(fieldGroup);
304
305 // Define per region average pressure calculators for use by
306 // pressure maintenance groups (GPMAINT keyword).
307 if (this->schedule()[reportStepIdx].has_gpmaint()) {
308 this->groupStateHelper().setRegionAveragePressureCalculator(
309 fieldGroup,
310 this->eclState_.fieldProps(),
311 this->regionalAveragePressureCalculator_
312 );
313 }
314 }
315 OPM_END_PARALLEL_TRY_CATCH("Failed to initialize group structure: ", comm)
316 }
317
318
319
320
321
322 // called at the beginning of a time step
323 template<typename TypeTag>
324 void
327 {
328 OPM_TIMEBLOCK(beginTimeStep);
329
330 this->updateAverageFormationFactor();
331
332 auto logger_guard = this->groupStateHelper().pushLogger();
333 auto& local_deferredLogger = this->groupStateHelper().deferredLogger();
334
335#ifdef RESERVOIR_COUPLING_ENABLED
336 auto rescoup_logger_guard = this->setupRescoupScopedLogger(local_deferredLogger);
337#endif
338
339 this->switched_prod_groups_.clear();
340 this->switched_inj_groups_.clear();
341
342 if (this->wellStructureChangedDynamically_) {
343 // Something altered the well structure/topology. Possibly
344 // WELSPECS/COMPDAT and/or WELOPEN run from an ACTIONX block.
345 // Reconstruct the local wells to account for the new well
346 // structure.
347 const auto reportStepIdx =
348 this->simulator_.episodeIndex();
349
350 // Disable WELPI scaling when well structure is updated in the
351 // middle of a report step.
352 const auto enableWellPIScaling = false;
353
354 this->initializeLocalWellStructure(reportStepIdx, enableWellPIScaling);
355 this->initializeGroupStructure(reportStepIdx);
356
357 this->commitWGState();
358
359 // Reset topology flag to signal that we've handled this
360 // structure change. That way we don't end up here in
361 // subsequent calls to beginTimeStep() unless there's a new
362 // dynamic change to the well structure during a report step.
363 this->wellStructureChangedDynamically_ = false;
364 }
365
366 this->resetWGState();
367 const int reportStepIdx = simulator_.episodeIndex();
368
369 this->wellState().updateWellsDefaultALQ(this->schedule(), reportStepIdx, this->summaryState());
370 this->wellState().gliftTimeStepInit();
371
372 const double simulationTime = simulator_.time();
374 {
375 // test wells
376 wellTesting(reportStepIdx, simulationTime, local_deferredLogger);
377
378 // create the well container
379 createWellContainer(reportStepIdx);
380
381#ifdef RESERVOIR_COUPLING_ENABLED
382 if (this->isReservoirCouplingMaster()) {
383 if (this->reservoirCouplingMaster().isFirstSubstepOfSyncTimestep()) {
384 this->receiveSlaveGroupData();
385 }
386 }
387#endif
388
389 // we need to update the group data after the well is created
390 // to make sure we get the correct mapping.
391 this->updateAndCommunicateGroupData(reportStepIdx,
392 simulator_.model().newtonMethod().numIterations(),
393 param_.nupcol_group_rate_tolerance_, /*update_wellgrouptarget*/ false);
394
395 // Wells are active if they are active wells on at least one process.
396 const Grid& grid = simulator_.vanguard().grid();
397 this->wells_active_ = grid.comm().max(!this->well_container_.empty());
398
399 // do the initialization for all the wells
400 // TODO: to see whether we can postpone of the intialization of the well containers to
401 // optimize the usage of the following several member variables
402 this->initWellContainer(reportStepIdx);
403
404 // update the updated cell flag
405 std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false);
406 for (auto& well : well_container_) {
407 well->updatePerforatedCell(is_cell_perforated_);
408 }
409
410 // calculate the efficiency factors for each well
411 this->calculateEfficiencyFactors(reportStepIdx);
412
413 if constexpr (has_polymer_)
414 {
415 if (PolymerModule::hasPlyshlog() || getPropValue<TypeTag, Properties::EnablePolymerMW>() ) {
416 this->setRepRadiusPerfLength();
417 }
418 }
419
420 }
421
422 OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginTimeStep() failed: ",
423 this->terminal_output_, simulator_.vanguard().grid().comm());
424
425 for (auto& well : well_container_) {
426 well->setVFPProperties(this->vfp_properties_.get());
427 well->setGuideRate(&this->guideRate_);
428 }
429
430 this->updateFiltrationModelsPreStep(local_deferredLogger);
431
432 // Close completions due to economic reasons
433 for (auto& well : well_container_) {
434 well->closeCompletions(this->wellTestState());
435 }
436
437 // we need the inj_multiplier from the previous time step
438 this->initInjMult();
439
440 if (alternative_well_rate_init_) {
441 // Update the well rates of well_state_, if only single-phase rates, to
442 // have proper multi-phase rates proportional to rates at bhp zero.
443 // This is done only for producers, as injectors will only have a single
444 // nonzero phase anyway.
445 for (const auto& well : well_container_) {
446 if (well->isProducer() && !well->wellIsStopped()) {
447 well->initializeProducerWellState(simulator_, this->wellState(), local_deferredLogger);
448 }
449 }
450 }
451
452 for (const auto& well : well_container_) {
453 if (well->isVFPActive(local_deferredLogger)){
454 well->setPrevSurfaceRates(this->wellState(), this->prevWellState());
455 }
456 }
457 try {
458 this->updateWellPotentials(reportStepIdx,
459 /*onlyAfterEvent*/true,
460 simulator_.vanguard().summaryConfig(),
461 local_deferredLogger);
462 } catch ( std::runtime_error& e ) {
463 const std::string msg = "A zero well potential is returned for output purposes. ";
464 local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
465 }
466 //update guide rates
467 this->guide_rate_handler_.updateGuideRates(
468 reportStepIdx, simulationTime, this->wellState(), this->groupState()
469 );
470#ifdef RESERVOIR_COUPLING_ENABLED
471 if (this->isReservoirCouplingSlave()) {
472 if (this->reservoirCouplingSlave().isFirstSubstepOfSyncTimestep()) {
473 this->sendSlaveGroupDataToMaster();
474 this->receiveGroupTargetsFromMaster(reportStepIdx);
475 }
476 }
477#endif
478 std::string exc_msg;
479 auto exc_type = ExceptionType::NONE;
480 // update gpmaint targets
481 if (this->schedule_[reportStepIdx].has_gpmaint()) {
482 for (const auto& calculator : regionalAveragePressureCalculator_) {
483 calculator.second->template defineState<ElementContext>(simulator_);
484 }
485 const double dt = simulator_.timeStepSize();
486 const Group& fieldGroup = this->schedule().getGroup("FIELD", reportStepIdx);
487 try {
488 this->groupStateHelper().updateGpMaintTargetForGroups(fieldGroup,
489 regionalAveragePressureCalculator_,
490 dt);
491 }
492 OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg);
493 }
494
495 this->updateAndCommunicateGroupData(reportStepIdx,
496 simulator_.model().newtonMethod().numIterations(),
497 param_.nupcol_group_rate_tolerance_,
498 /*update_wellgrouptarget*/ true);
499 try {
500 // Compute initial well solution for new wells and injectors that change injection type i.e. WAG.
501 for (auto& well : well_container_) {
502 const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
503 + ScheduleEvents::INJECTION_TYPE_CHANGED
504 + ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER
505 + ScheduleEvents::NEW_WELL;
506
507 const auto& events = this->schedule()[reportStepIdx].wellgroup_events();
508 const bool event = this->report_step_starts_ && events.hasEvent(well->name(), effective_events_mask);
509 const bool dyn_status_change = this->wellState().well(well->name()).status
510 != this->prevWellState().well(well->name()).status;
511
512 if (event || dyn_status_change) {
513 try {
514 well->scaleSegmentRatesAndPressure(this->wellState());
515 well->calculateExplicitQuantities(simulator_, this->groupStateHelper());
516 well->updateWellStateWithTarget(simulator_, this->groupStateHelper(), this->wellState());
517 well->updatePrimaryVariables(this->groupStateHelper());
518 well->solveWellEquation(
519 simulator_, this->groupStateHelper(), this->wellState()
520 );
521 } catch (const std::exception& e) {
522 const std::string msg = "Compute initial well solution for new well " + well->name() + " failed. Continue with zero initial rates";
523 local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
524 }
525 }
526 }
527 }
528 // Catch clauses for all errors setting exc_type and exc_msg
529 OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg);
530
531#ifdef RESERVOIR_COUPLING_ENABLED
532 if (this->isReservoirCouplingMaster()) {
533 if (this->reservoirCouplingMaster().isFirstSubstepOfSyncTimestep()) {
534 this->sendMasterGroupTargetsToSlaves();
535 }
536 }
537#endif
538
539 if (exc_type != ExceptionType::NONE) {
540 const std::string msg = "Compute initial well solution for new wells failed. Continue with zero initial rates";
541 local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
542 }
543
544 const auto& comm = simulator_.vanguard().grid().comm();
545 logAndCheckForExceptionsAndThrow(local_deferredLogger,
546 exc_type, "beginTimeStep() failed: " + exc_msg, this->terminal_output_, comm);
547
548 }
549
550#ifdef RESERVOIR_COUPLING_ENABLED
551 // Automatically manages the lifecycle of the DeferredLogger pointer
552 // in the reservoir coupling logger. Ensures the logger is properly
553 // cleared when it goes out of scope, preventing dangling pointer issues:
554 //
555 // - The ScopedLoggerGuard constructor sets the logger pointer
556 // - When the guard goes out of scope, the destructor clears the pointer
557 // - Move semantics transfer ownership safely when returning from this function
558 // - The moved-from guard is "nullified" and its destructor does nothing
559 // - Only the final guard in the caller will clear the logger
560 template<typename TypeTag>
561 std::optional<ReservoirCoupling::ScopedLoggerGuard>
564 if (this->isReservoirCouplingMaster()) {
566 this->reservoirCouplingMaster().logger(),
567 &local_logger
568 };
569 } else if (this->isReservoirCouplingSlave()) {
570 return ReservoirCoupling::ScopedLoggerGuard{
571 this->reservoirCouplingSlave().logger(),
572 &local_logger
573 };
574 }
575 return std::nullopt;
576 }
577
578 template<typename TypeTag>
579 void
580 BlackoilWellModel<TypeTag>::
581 receiveSlaveGroupData()
582 {
583 assert(this->isReservoirCouplingMaster());
584 RescoupReceiveSlaveGroupData<Scalar, IndexTraits> slave_group_data_receiver{
585 this->groupStateHelper(),
586 };
587 slave_group_data_receiver.receiveSlaveGroupData();
588 }
589
590 template<typename TypeTag>
591 void
592 BlackoilWellModel<TypeTag>::
593 sendSlaveGroupDataToMaster()
594 {
595 assert(this->isReservoirCouplingSlave());
596 RescoupSendSlaveGroupData<Scalar, IndexTraits> slave_group_data_sender{this->groupStateHelper()};
597 slave_group_data_sender.sendSlaveGroupDataToMaster();
598 }
599
600 template<typename TypeTag>
601 void
602 BlackoilWellModel<TypeTag>::
603 sendMasterGroupTargetsToSlaves()
604 {
605 // This function is called by the master process to send the group targets to the slaves.
606 RescoupTargetCalculator<Scalar, IndexTraits> target_calculator{
607 this->guide_rate_handler_,
608 this->groupStateHelper()
609 };
610 target_calculator.calculateMasterGroupTargetsAndSendToSlaves();
611 }
612
613 template<typename TypeTag>
614 void
615 BlackoilWellModel<TypeTag>::
616 receiveGroupTargetsFromMaster(int reportStepIdx)
617 {
618 RescoupReceiveGroupTargets<Scalar, IndexTraits> target_receiver{
619 this->guide_rate_handler_,
620 this->wellState(),
621 this->groupState(),
622 reportStepIdx
623 };
624 target_receiver.receiveGroupTargetsFromMaster();
625 }
626
627#endif // RESERVOIR_COUPLING_ENABLED
628
629 template<typename TypeTag>
630 void
632 const double simulationTime,
633 DeferredLogger& deferred_logger)
634 {
635 for (const std::string& well_name : this->getWellsForTesting(timeStepIdx, simulationTime)) {
636 const Well& wellEcl = this->schedule().getWell(well_name, timeStepIdx);
637 if (wellEcl.getStatus() == Well::Status::SHUT)
638 continue;
639
640 WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger);
641 // some preparation before the well can be used
642 well->init(depth_, gravity_, B_avg_, true);
643
644 Scalar well_efficiency_factor = wellEcl.getEfficiencyFactor() *
645 this->wellState().getGlobalEfficiencyScalingFactor(well_name);
646 this->groupStateHelper().accumulateGroupEfficiencyFactor(
647 this->schedule().getGroup(wellEcl.groupName(), timeStepIdx),
648 well_efficiency_factor
649 );
650
651 well->setWellEfficiencyFactor(well_efficiency_factor);
652 well->setVFPProperties(this->vfp_properties_.get());
653 well->setGuideRate(&this->guideRate_);
654
655 // initialize rates/previous rates to prevent zero fractions in vfp-interpolation
656 if (well->isProducer() && alternative_well_rate_init_) {
657 well->initializeProducerWellState(simulator_, this->wellState(), deferred_logger);
658 }
659 if (well->isVFPActive(deferred_logger)) {
660 well->setPrevSurfaceRates(this->wellState(), this->prevWellState());
661 }
662
663 const auto& network = this->schedule()[timeStepIdx].network();
664 if (network.active()) {
665 this->network_.initializeWell(*well);
666 }
667 try {
668 using GLiftEclWells = typename GasLiftGroupInfo<Scalar, IndexTraits>::GLiftEclWells;
669 GLiftEclWells ecl_well_map;
670 gaslift_.initGliftEclWellMap(well_container_, ecl_well_map);
671 well->wellTesting(simulator_,
672 simulationTime,
673 this->groupStateHelper(),
674 this->wellState(),
675 this->wellTestState(),
676 ecl_well_map,
677 this->well_open_times_);
678 } catch (const std::exception& e) {
679 const std::string msg =
680 fmt::format(fmt::runtime("Exception during testing of well: {}. The well will not open.\n"
681 "Exception message: {}"), wellEcl.name(), e.what());
682 deferred_logger.warning("WELL_TESTING_FAILED", msg);
683 }
684 }
685 }
686
687 // called at the end of a report step
688 template<typename TypeTag>
689 void
692 {
693 // Clear the communication data structures for above values.
694 for (auto&& pinfo : this->local_parallel_well_info_)
695 {
696 pinfo.get().clear();
697 }
698 }
699
700
701
702
703
704 // called at the end of a report step
705 template<typename TypeTag>
708 lastReport() const {return last_report_; }
709
710
711
712
713
714 // called at the end of a time step
715 template<typename TypeTag>
716 void
718 timeStepSucceeded(const double simulationTime, const double dt)
719 {
720 this->closed_this_step_.clear();
721
722 // time step is finished and we are not any more at the beginning of an report step
723 this->report_step_starts_ = false;
724 const int reportStepIdx = simulator_.episodeIndex();
725
726 auto logger_guard = this->groupStateHelper().pushLogger();
727 auto& local_deferredLogger = this->groupStateHelper().deferredLogger();
728 for (const auto& well : well_container_) {
729 if (getPropValue<TypeTag, Properties::EnablePolymerMW>() && well->isInjector()) {
730 well->updateWaterThroughput(dt, this->wellState());
731 }
732 }
733 // update connection transmissibility factor and d factor (if applicable) in the wellstate
734 for (const auto& well : well_container_) {
735 well->updateConnectionTransmissibilityFactor(simulator_, this->wellState().well(well->indexOfWell()));
736 well->updateConnectionDFactor(simulator_, this->wellState().well(well->indexOfWell()));
737 }
738
739 if (Indices::waterEnabled) {
740 this->updateFiltrationModelsPostStep(dt, FluidSystem::waterPhaseIdx, local_deferredLogger);
741 }
742
743 // WINJMULT: At the end of the time step, update the inj_multiplier saved in WellState for later use
744 this->updateInjMult(local_deferredLogger);
745
746 // report well switching
747 for (const auto& well : well_container_) {
748 well->reportWellSwitching(this->wellState().well(well->indexOfWell()), local_deferredLogger);
749 }
750 // report group switching
751 if (this->terminal_output_) {
752 this->reportGroupSwitching(local_deferredLogger);
753 }
754
755 // update the rate converter with current averages pressures etc in
756 rateConverter_->template defineState<ElementContext>(simulator_);
757
758 // calculate the well potentials
759 try {
760 this->updateWellPotentials(reportStepIdx,
761 /*onlyAfterEvent*/false,
762 simulator_.vanguard().summaryConfig(),
763 local_deferredLogger);
764 } catch ( std::runtime_error& e ) {
765 const std::string msg = "A zero well potential is returned for output purposes. ";
766 local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg);
767 }
768
769 updateWellTestState(simulationTime, this->wellTestState());
770
771 // check group sales limits at the end of the timestep
772 const Group& fieldGroup = this->schedule_.getGroup("FIELD", reportStepIdx);
773 this->checkGEconLimits(fieldGroup, simulationTime,
774 simulator_.episodeIndex(), local_deferredLogger);
775 this->checkGconsaleLimits(fieldGroup, this->wellState(),
776 simulator_.episodeIndex(), local_deferredLogger);
777
778 this->calculateProductivityIndexValues(local_deferredLogger);
779
780 const auto& glo = this->schedule().glo(reportStepIdx);
781 this->updateNONEProductionGroups(glo, local_deferredLogger);
782
783 this->commitWGState();
784
785 //reporting output temperatures
786 this->computeWellTemperature();
787 }
788
789
790 template<typename TypeTag>
791 void
794 unsigned elemIdx) const
795 {
796 rate = 0;
797
798 if (!is_cell_perforated_[elemIdx] || cellRates_.count(elemIdx) == 0) {
799 return;
800 }
801
802 rate = cellRates_.at(elemIdx);
803 }
804
805
806 template<typename TypeTag>
807 template <class Context>
808 void
811 const Context& context,
812 unsigned spaceIdx,
813 unsigned timeIdx) const
814 {
815 rate = 0;
816 int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
817
818 if (!is_cell_perforated_[elemIdx] || cellRates_.count(elemIdx) == 0) {
819 return;
820 }
821
822 rate = cellRates_.at(elemIdx);
823 }
824
825
826
827 template<typename TypeTag>
828 void
830 initializeWellState(const int timeStepIdx)
831 {
832 const auto pressIx = []()
833 {
834 if (Indices::oilEnabled) { return FluidSystem::oilPhaseIdx; }
835 if (Indices::waterEnabled) { return FluidSystem::waterPhaseIdx; }
836
837 return FluidSystem::gasPhaseIdx;
838 }();
839
840 auto cellPressures = std::vector<Scalar>(this->local_num_cells_, Scalar{0});
841 auto cellTemperatures = std::vector<Scalar>(this->local_num_cells_, Scalar{0});
842
843 auto elemCtx = ElementContext { this->simulator_ };
844 const auto& gridView = this->simulator_.vanguard().gridView();
845
847 for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
848 elemCtx.updatePrimaryStencil(elem);
849 elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
850
851 const auto ix = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
852 const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState();
853
854 cellPressures[ix] = fs.pressure(pressIx).value();
855 cellTemperatures[ix] = fs.temperature(0).value();
856 }
857 OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::initializeWellState() failed: ",
858 this->simulator_.vanguard().grid().comm());
859
860 this->wellState().init(cellPressures, cellTemperatures, this->schedule(), this->wells_ecl_,
861 this->local_parallel_well_info_, timeStepIdx,
862 &this->prevWellState(), this->well_perf_data_,
863 this->summaryState(), simulator_.vanguard().enableDistributedWells());
864 }
865
866
867
868
869
870 template<typename TypeTag>
871 void
873 createWellContainer(const int report_step)
874 {
875 auto logger_guard = this->groupStateHelper().pushLogger();
876 auto& local_deferredLogger = this->groupStateHelper().deferredLogger();
877
878 const int nw = this->numLocalWells();
879
880 well_container_.clear();
881
882 if (nw > 0) {
883 well_container_.reserve(nw);
884
885 const auto& wmatcher = this->schedule().wellMatcher(report_step);
886 const auto& wcycle = this->schedule()[report_step].wcycle.get();
887
888 // First loop and check for status changes. This is necessary
889 // as wcycle needs the updated open/close times.
890 std::ranges::for_each(this->wells_ecl_,
891 [this, &wg_events = this->report_step_start_events_](const auto& well_ecl)
892 {
893 if (!well_ecl.hasConnections()) {
894 // No connections in this well. Nothing to do.
895 return;
896 }
897
898 constexpr auto events_mask = ScheduleEvents::WELL_STATUS_CHANGE |
899 ScheduleEvents::REQUEST_OPEN_WELL |
900 ScheduleEvents::REQUEST_SHUT_WELL;
901 const bool well_event =
902 this->report_step_starts_ &&
903 wg_events.hasEvent(well_ecl.name(), events_mask);
904 // WCYCLE is suspendended by explicit SHUT events by the user.
905 // and restarted after explicit OPEN events.
906 // Note: OPEN or SHUT event does not necessary mean the well
907 // actually opened or shut at this point as the simulator could
908 // have done this by operabilty checks and well testing. This
909 // may need further testing and imply code changes to cope with
910 // these corner cases.
911 if (well_event) {
912 if (well_ecl.getStatus() == WellStatus::OPEN) {
913 this->well_open_times_.insert_or_assign(well_ecl.name(),
914 this->simulator_.time());
915 this->well_close_times_.erase(well_ecl.name());
916 } else if (well_ecl.getStatus() == WellStatus::SHUT) {
917 this->well_close_times_.insert_or_assign(well_ecl.name(),
918 this->simulator_.time());
919 this->well_open_times_.erase(well_ecl.name());
920 }
921 }
922 });
923
924 // Grab wcycle states. This needs to run before the schedule gets processed
925 const auto cycle_states = wcycle.wellStatus(this->simulator_.time(),
926 wmatcher,
927 this->well_open_times_,
928 this->well_close_times_);
929
930 for (int w = 0; w < nw; ++w) {
931 const Well& well_ecl = this->wells_ecl_[w];
932
933 if (!well_ecl.hasConnections()) {
934 // No connections in this well. Nothing to do.
935 continue;
936 }
937
938 const std::string& well_name = well_ecl.name();
939 const auto well_status = this->schedule()
940 .getWell(well_name, report_step).getStatus();
941
942 const bool shut_event = this->wellState().well(w).events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE)
943 && well_status == Well::Status::SHUT;
944 const bool open_event = this->wellState().well(w).events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE)
945 && well_status == Well::Status::OPEN;
946 const auto& ws = this->wellState().well(well_name);
947
948 if (shut_event && ws.status != Well::Status::SHUT) {
949 this->closed_this_step_.insert(well_name);
950 this->wellState().shutWell(w);
951 } else if (open_event && ws.status != Well::Status::OPEN) {
952 this->wellState().openWell(w);
953 }
954
955 // A new WCON keywords can re-open a well that was closed/shut due to Physical limit
956 if (this->wellTestState().well_is_closed(well_name)) {
957 // The well was shut this timestep, we are most likely retrying
958 // a timestep without the well in question, after it caused
959 // repeated timestep cuts. It should therefore not be opened,
960 // even if it was new or received new targets this report step.
961 const bool closed_this_step = (this->wellTestState().lastTestTime(well_name) == simulator_.time());
962 // TODO: more checking here, to make sure this standard more specific and complete
963 // maybe there is some WCON keywords will not open the well
964 auto& events = this->wellState().well(w).events;
965 if (events.hasEvent(ScheduleEvents::REQUEST_OPEN_WELL)) {
966 if (!closed_this_step) {
967 this->wellTestState().open_well(well_name);
968 this->wellTestState().open_completions(well_name);
969 this->well_open_times_.insert_or_assign(well_name,
970 this->simulator_.time());
971 this->well_close_times_.erase(well_name);
972 }
973 events.clearEvent(ScheduleEvents::REQUEST_OPEN_WELL);
974 }
975 }
976
977 // TODO: should we do this for all kinds of closing reasons?
978 // something like wellTestState().hasWell(well_name)?
979 if (this->wellTestState().well_is_closed(well_name))
980 {
981 if (well_ecl.getAutomaticShutIn()) {
982 // shut wells are not added to the well container
983 this->wellState().shutWell(w);
984 this->well_close_times_.erase(well_name);
985 this->well_open_times_.erase(well_name);
986 continue;
987 } else {
988 if (!well_ecl.getAllowCrossFlow()) {
989 // stopped wells where cross flow is not allowed
990 // are not added to the well container
991 this->wellState().shutWell(w);
992 this->well_close_times_.erase(well_name);
993 this->well_open_times_.erase(well_name);
994 continue;
995 }
996 // stopped wells are added to the container but marked as stopped
997 this->wellState().stopWell(w);
998 }
999 }
1000
1001 // shut wells with zero rante constraints and disallowing
1002 if (!well_ecl.getAllowCrossFlow()) {
1003 const bool any_zero_rate_constraint = well_ecl.isProducer()
1004 ? well_ecl.productionControls(this->summaryState_).anyZeroRateConstraint()
1005 : well_ecl.injectionControls(this->summaryState_).anyZeroRateConstraint();
1006 if (any_zero_rate_constraint) {
1007 // Treat as shut, do not add to container.
1008 local_deferredLogger.debug(fmt::format(fmt::runtime(" Well {} gets shut due to having zero rate constraint and disallowing crossflow "), well_ecl.name()));
1009 this->wellState().shutWell(w);
1010 this->well_close_times_.erase(well_name);
1011 this->well_open_times_.erase(well_name);
1012 continue;
1013 }
1014 }
1015
1016 if (!wcycle.empty()) {
1017 const auto it = cycle_states.find(well_name);
1018 if (it != cycle_states.end()) {
1019 if (!it->second || well_status == Well::Status::SHUT) {
1020 // If well is shut in schedule we keep it shut
1021 if (well_status == Well::Status::SHUT) {
1022 this->well_open_times_.erase(well_name);
1023 this->well_close_times_.erase(well_name);
1024 }
1025 this->wellState().shutWell(w);
1026 continue;
1027 } else {
1028 this->wellState().openWell(w);
1029 }
1030 }
1031 }
1032
1033 // We dont add SHUT wells to the container
1034 if (ws.status == Well::Status::SHUT) {
1035 continue;
1036 }
1037
1038 well_container_.emplace_back(this->createWellPointer(w, report_step));
1039
1040 if (ws.status == Well::Status::STOP) {
1041 well_container_.back()->stopWell();
1042 this->well_close_times_.erase(well_name);
1043 this->well_open_times_.erase(well_name);
1044 }
1045 }
1046
1047 if (!wcycle.empty()) {
1048 const auto schedule_open =
1049 [&wg_events = this->report_step_start_events_](const std::string& name)
1050 {
1051 return wg_events.hasEvent(name, ScheduleEvents::REQUEST_OPEN_WELL);
1052 };
1053 for (const auto& [wname, wscale] : wcycle.efficiencyScale(this->simulator_.time(),
1054 this->simulator_.timeStepSize(),
1055 wmatcher,
1056 this->well_open_times_,
1057 schedule_open))
1058 {
1059 this->wellState().updateEfficiencyScalingFactor(wname, wscale);
1060 this->schedule_.add_event(ScheduleEvents::WELLGROUP_EFFICIENCY_UPDATE, report_step);
1061 }
1062 }
1063 }
1064
1065 this->well_container_generic_.clear();
1066 for (auto& w : well_container_) {
1067 this->well_container_generic_.push_back(w.get());
1068 }
1069
1070 this->network_.initialize(report_step);
1071
1072 this->wbp_.registerOpenWellsForWBPCalculation();
1073 }
1074
1075
1076
1077
1078
1079 template <typename TypeTag>
1082 createWellPointer(const int wellID, const int report_step) const
1083 {
1084 const auto is_multiseg = this->wells_ecl_[wellID].isMultiSegment();
1085
1086 if (! (this->param_.use_multisegment_well_ && is_multiseg)) {
1087 return this->template createTypedWellPointer<StandardWell<TypeTag>>(wellID, report_step);
1088 }
1089 else {
1090 return this->template createTypedWellPointer<MultisegmentWell<TypeTag>>(wellID, report_step);
1091 }
1092 }
1093
1094
1095
1096
1097
1098 template <typename TypeTag>
1099 template <typename WellType>
1100 std::unique_ptr<WellType>
1102 createTypedWellPointer(const int wellID, const int time_step) const
1103 {
1104 // Use the pvtRegionIdx from the top cell
1105 const auto& perf_data = this->well_perf_data_[wellID];
1106
1107 // Cater for case where local part might have no perforations.
1108 const auto pvtreg = perf_data.empty()
1109 ? 0 : this->pvt_region_idx_[perf_data.front().cell_index];
1110
1111 const auto& parallel_well_info = this->local_parallel_well_info_[wellID].get();
1112 const auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg);
1113
1114 return std::make_unique<WellType>(this->wells_ecl_[wellID],
1115 parallel_well_info,
1116 time_step,
1117 this->param_,
1118 *this->rateConverter_,
1119 global_pvtreg,
1120 this->numConservationQuantities(),
1121 this->numPhases(),
1122 wellID,
1123 perf_data);
1124 }
1125
1126
1127
1128
1129
1130 template<typename TypeTag>
1133 createWellForWellTest(const std::string& well_name,
1134 const int report_step,
1135 DeferredLogger& deferred_logger) const
1136 {
1137 // Finding the location of the well in wells_ecl
1138 const auto it = std::find_if(this->wells_ecl_.begin(),
1139 this->wells_ecl_.end(),
1140 [&well_name](const auto& w)
1141 { return well_name == w.name(); });
1142 // It should be able to find in wells_ecl.
1143 if (it == this->wells_ecl_.end()) {
1144 OPM_DEFLOG_THROW(std::logic_error,
1145 fmt::format(fmt::runtime("Could not find well {} in wells_ecl"), well_name),
1146 deferred_logger);
1147 }
1148
1149 const int pos = static_cast<int>(std::distance(this->wells_ecl_.begin(), it));
1150 return this->createWellPointer(pos, report_step);
1151 }
1152
1153
1154
1155 template<typename TypeTag>
1156 void
1158 assemble(const int iterationIdx,
1159 const double dt)
1160 {
1161 OPM_TIMEFUNCTION();
1162 auto logger_guard = this->groupStateHelper().pushLogger();
1163 auto& local_deferredLogger = this->groupStateHelper().deferredLogger();
1164
1166 if (gaslift_.terminalOutput()) {
1167 const std::string msg =
1168 fmt::format(fmt::runtime("assemble() : iteration {}"), iterationIdx);
1169 gaslift_.gliftDebug(msg, local_deferredLogger);
1170 }
1171 }
1172 last_report_ = SimulatorReportSingle();
1173 Dune::Timer perfTimer;
1174 perfTimer.start();
1175 this->closed_offending_wells_.clear();
1176
1177 {
1178 const int episodeIdx = simulator_.episodeIndex();
1179 const auto& network = this->schedule()[episodeIdx].network();
1180 if (!this->wellsActive() && !network.active()) {
1181 return;
1182 }
1183 }
1184
1185 if (iterationIdx == 0 && this->wellsActive()) {
1186 OPM_TIMEBLOCK(firstIterationAssmble);
1187 // try-catch is needed here as updateWellControls
1188 // contains global communication and has either to
1189 // be reached by all processes or all need to abort
1190 // before.
1192 {
1193 calculateExplicitQuantities();
1194 prepareTimeStep(local_deferredLogger);
1195 }
1196 OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger,
1197 "assemble() failed (It=0): ",
1198 this->terminal_output_, grid().comm());
1199 }
1200
1201 const bool well_group_control_changed = updateWellControlsAndNetwork(false, dt, local_deferredLogger);
1202
1203 // even when there is no wells active, the network nodal pressure still need to be updated through updateWellControlsAndNetwork()
1204 // but there is no need to assemble the well equations
1205 if ( ! this->wellsActive() ) {
1206 return;
1207 }
1208
1209 assembleWellEqWithoutIteration(dt);
1210 // Pre-compute cell rates to we don't have to do this for every cell during linearization...
1211 updateCellRates();
1212
1213 // if group or well control changes we don't consider the
1214 // case converged
1215 last_report_.well_group_control_changed = well_group_control_changed;
1216 last_report_.assemble_time_well += perfTimer.stop();
1217 }
1218
1219
1220
1221
1222 template<typename TypeTag>
1223 bool
1225 updateWellControlsAndNetwork(const bool mandatory_network_balance,
1226 const double dt,
1227 DeferredLogger& local_deferredLogger)
1228 {
1229 OPM_TIMEFUNCTION();
1230 // not necessarily that we always need to update once of the network solutions
1231 bool do_network_update = true;
1232 bool well_group_control_changed = false;
1233 Scalar network_imbalance = 0.0;
1234 // after certain number of the iterations, we use relaxed tolerance for the network update
1235 const std::size_t iteration_to_relax = param_.network_max_strict_outer_iterations_;
1236 // after certain number of the iterations, we terminate
1237 const std::size_t max_iteration = param_.network_max_outer_iterations_;
1238 std::size_t network_update_iteration = 0;
1239 network_needs_more_balancing_force_another_newton_iteration_ = false;
1240 while (do_network_update) {
1241 if (network_update_iteration >= max_iteration ) {
1242 // only output to terminal if we at the last newton iterations where we try to balance the network.
1243 const int episodeIdx = simulator_.episodeIndex();
1244 const int iterationIdx = simulator_.model().newtonMethod().numIterations();
1245 if (this->network_.shouldBalance(episodeIdx, iterationIdx + 1)) {
1246 if (this->terminal_output_) {
1247 const std::string msg = fmt::format("Maximum of {:d} network iterations has been used and we stop the update, \n"
1248 "and try again after the next Newton iteration (imbalance = {:.2e} bar)",
1249 max_iteration, network_imbalance*1.0e-5);
1250 local_deferredLogger.debug(msg);
1251 }
1252 // To avoid stopping the newton iterations too early, before the network is converged,
1253 // we need to report it
1254 network_needs_more_balancing_force_another_newton_iteration_ = true;
1255 } else {
1256 if (this->terminal_output_) {
1257 const std::string msg = fmt::format("Maximum of {:d} network iterations has been used and we stop the update. \n"
1258 "The simulator will continue with unconverged network results (imbalance = {:.2e} bar)",
1259 max_iteration, network_imbalance*1.0e-5);
1260 local_deferredLogger.info(msg);
1261 }
1262 }
1263 break;
1264 }
1265 if (this->terminal_output_ && (network_update_iteration == iteration_to_relax) ) {
1266 local_deferredLogger.debug("We begin using relaxed tolerance for network update now after " + std::to_string(iteration_to_relax) + " iterations ");
1267 }
1268 const bool relax_network_balance = network_update_iteration >= iteration_to_relax;
1269 // Never optimize gas lift in last iteration, to allow network convergence (unless max_iter < 2)
1270 const bool optimize_gas_lift = ( (network_update_iteration + 1) < std::max(max_iteration, static_cast<std::size_t>(2)) );
1271 std::tie(well_group_control_changed, do_network_update, network_imbalance) =
1272 updateWellControlsAndNetworkIteration(mandatory_network_balance, relax_network_balance, optimize_gas_lift, dt,local_deferredLogger);
1273 ++network_update_iteration;
1274 }
1275 return well_group_control_changed;
1276 }
1277
1278
1279
1280
1281 template<typename TypeTag>
1282 std::tuple<bool, bool, typename BlackoilWellModel<TypeTag>::Scalar>
1284 updateWellControlsAndNetworkIteration(const bool mandatory_network_balance,
1285 const bool relax_network_tolerance,
1286 const bool optimize_gas_lift,
1287 const double dt,
1288 DeferredLogger& local_deferredLogger)
1289 {
1290 OPM_TIMEFUNCTION();
1291 const int iterationIdx = simulator_.model().newtonMethod().numIterations();
1292 const int reportStepIdx = simulator_.episodeIndex();
1293 this->updateAndCommunicateGroupData(reportStepIdx, iterationIdx,
1294 param_.nupcol_group_rate_tolerance_, /*update_wellgrouptarget*/ true);
1295 // We need to call updateWellControls before we update the network as
1296 // network updates are only done on thp controlled wells.
1297 // Note that well controls are allowed to change during updateNetwork
1298 // and in prepareWellsBeforeAssembling during well solves.
1299 bool well_group_control_changed = updateWellControls(local_deferredLogger);
1300 const auto [more_inner_network_update, network_imbalance] =
1301 this->network_.update(mandatory_network_balance,
1302 local_deferredLogger,
1303 relax_network_tolerance);
1304
1305 bool alq_updated = false;
1307 {
1308 if (optimize_gas_lift) {
1309 // we need to update the potentials if the thp limit as been modified by
1310 // the network balancing
1311 const bool updatePotentials = (this->network_.shouldBalance(reportStepIdx, iterationIdx) ||
1312 mandatory_network_balance);
1313 alq_updated = gaslift_.maybeDoGasLiftOptimize(simulator_,
1314 well_container_,
1315 this->network_.nodePressures(),
1316 updatePotentials,
1317 this->wellState(),
1318 this->groupState(),
1319 local_deferredLogger);
1320 }
1321 prepareWellsBeforeAssembling(dt);
1322 }
1323 OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger,
1324 "updateWellControlsAndNetworkIteration() failed: ",
1325 this->terminal_output_, grid().comm());
1326
1327 // update guide rates
1328 if (alq_updated || BlackoilWellModelGuideRates(*this).
1329 guideRateUpdateIsNeeded(reportStepIdx)) {
1330 const double simulationTime = simulator_.time();
1331 // NOTE: For reservoir coupling: Slave group potentials are only communicated
1332 // at the start of the time step, see beginTimeStep(). Here, we assume those
1333 // potentials remain unchanged during the time step when updating guide rates below.
1334 this->guide_rate_handler_.updateGuideRates(
1335 reportStepIdx, simulationTime, this->wellState(), this->groupState()
1336 );
1337 }
1338 // we need to re-iterate the network when the well group controls changed or gaslift/alq is changed or
1339 // the inner iterations are did not converge
1340 const bool more_network_update = this->network_.shouldBalance(reportStepIdx, iterationIdx) &&
1341 (more_inner_network_update || alq_updated);
1342 return {well_group_control_changed, more_network_update, network_imbalance};
1343 }
1344
1345 template<typename TypeTag>
1346 void
1348 assembleWellEq(const double dt)
1349 {
1350 OPM_TIMEFUNCTION();
1351 for (auto& well : well_container_) {
1352 well->assembleWellEq(simulator_, dt, this->groupStateHelper(), this->wellState());
1353 }
1354 }
1355
1356
1357 template<typename TypeTag>
1358 void
1360 prepareWellsBeforeAssembling(const double dt)
1361 {
1362 OPM_TIMEFUNCTION();
1363 for (auto& well : well_container_) {
1364 well->prepareWellBeforeAssembling(
1365 simulator_, dt, this->groupStateHelper(), this->wellState()
1366 );
1367 }
1368 }
1369
1370
1371 template<typename TypeTag>
1372 void
1374 assembleWellEqWithoutIteration(const double dt)
1375 {
1376 OPM_TIMEFUNCTION();
1377 auto& deferred_logger = this->groupStateHelper().deferredLogger();
1378 // We make sure that all processes throw in case there is an exception
1379 // on one of them (WetGasPvt::saturationPressure might throw if not converged)
1381
1382 for (auto& well: well_container_) {
1383 well->assembleWellEqWithoutIteration(simulator_, this->groupStateHelper(), dt, this->wellState(),
1384 /*solving_with_zero_rate=*/false);
1385 }
1386 OPM_END_PARALLEL_TRY_CATCH_LOG(deferred_logger, "BlackoilWellModel::assembleWellEqWithoutIteration failed: ",
1387 this->terminal_output_, grid().comm());
1388
1389 }
1390
1391 template<typename TypeTag>
1392 void
1395 {
1396 // Pre-compute cell rates for all wells
1397 cellRates_.clear();
1398 for (const auto& well : well_container_) {
1399 well->addCellRates(cellRates_);
1400 }
1401 }
1402
1403 template<typename TypeTag>
1404 void
1406 updateCellRatesForDomain(int domainIndex, const std::map<std::string, int>& well_domain_map)
1407 {
1408 // Pre-compute cell rates only for wells in the specified domain
1409 cellRates_.clear();
1410 for (const auto& well : well_container_) {
1411 const auto it = well_domain_map.find(well->name());
1412 if (it != well_domain_map.end() && it->second == domainIndex) {
1413 well->addCellRates(cellRates_);
1414 }
1415 }
1416 }
1417
1418#if COMPILE_GPU_BRIDGE
1419 template<typename TypeTag>
1420 void
1423 {
1424 // prepare for StandardWells
1426
1427 for(unsigned int i = 0; i < well_container_.size(); i++){
1428 auto& well = well_container_[i];
1429 auto derived = dynamic_cast<StandardWell<TypeTag>*>(well.get());
1430 if (derived) {
1431 wellContribs.addNumBlocks(derived->linSys().getNumBlocks());
1432 }
1433 }
1434
1435 // allocate memory for data from StandardWells
1436 wellContribs.alloc();
1437
1438 for(unsigned int i = 0; i < well_container_.size(); i++){
1439 auto& well = well_container_[i];
1440 // maybe WellInterface could implement addWellContribution()
1441 auto derived_std = dynamic_cast<StandardWell<TypeTag>*>(well.get());
1442 if (derived_std) {
1443 derived_std->linSys().extract(derived_std->numStaticWellEq, wellContribs);
1444 } else {
1445 auto derived_ms = dynamic_cast<MultisegmentWell<TypeTag>*>(well.get());
1446 if (derived_ms) {
1447 derived_ms->linSys().extract(wellContribs);
1448 } else {
1449 OpmLog::warning("Warning unknown type of well");
1450 }
1451 }
1452 }
1453 }
1454#endif
1455
1456 template<typename TypeTag>
1457 void
1459 addWellContributions(SparseMatrixAdapter& jacobian) const
1460 {
1461 for ( const auto& well: well_container_ ) {
1462 well->addWellContributions(jacobian);
1463 }
1464 }
1465
1466 template<typename TypeTag>
1467 void
1470 const BVector& weights,
1471 const bool use_well_weights) const
1472 {
1473 int nw = this->numLocalWellsEnd();
1474 int rdofs = local_num_cells_;
1475 for ( int i = 0; i < nw; i++ ) {
1476 int wdof = rdofs + i;
1477 jacobian[wdof][wdof] = 1.0;// better scaling ?
1478 }
1479
1480 for (const auto& well : well_container_) {
1481 well->addWellPressureEquations(jacobian,
1482 weights,
1483 pressureVarIndex,
1484 use_well_weights,
1485 this->wellState());
1486 }
1487 }
1488
1489 template <typename TypeTag>
1491 addReservoirSourceTerms(GlobalEqVector& residual,
1492 const std::vector<typename SparseMatrixAdapter::MatrixBlock*>& diagMatAddress) const
1493 {
1494 // NB this loop may write multiple times to the same element
1495 // if a cell is perforated by more than one well, so it should
1496 // not be OpenMP-parallelized.
1497 for (const auto& well : well_container_) {
1498 if (!well->isOperableAndSolvable() && !well->wellIsStopped()) {
1499 continue;
1500 }
1501 const auto& cells = well->cells();
1502 const auto& rates = well->connectionRates();
1503 for (unsigned perfIdx = 0; perfIdx < rates.size(); ++perfIdx) {
1504 unsigned cellIdx = cells[perfIdx];
1505 auto rate = rates[perfIdx];
1506 rate *= -1.0;
1507 VectorBlockType res(0.0);
1508 using MatrixBlockType = typename SparseMatrixAdapter::MatrixBlock;
1509 MatrixBlockType bMat(0.0);
1510 simulator_.model().linearizer().setResAndJacobi(res, bMat, rate);
1511 residual[cellIdx] += res;
1512 *diagMatAddress[cellIdx] += bMat;
1513 }
1514 }
1515 }
1516
1517
1518 template<typename TypeTag>
1519 void
1522 {
1523 int nw = this->numLocalWellsEnd();
1524 int rdofs = local_num_cells_;
1525 for (int i = 0; i < nw; ++i) {
1526 int wdof = rdofs + i;
1527 jacobian.entry(wdof,wdof) = 1.0;// better scaling ?
1528 }
1529 const auto wellconnections = this->getMaxWellConnections();
1530 for (int i = 0; i < nw; ++i) {
1531 const auto& perfcells = wellconnections[i];
1532 for (int perfcell : perfcells) {
1533 int wdof = rdofs + i;
1534 jacobian.entry(wdof, perfcell) = 0.0;
1535 jacobian.entry(perfcell, wdof) = 0.0;
1536 }
1537 }
1538 }
1539
1540
1541 template<typename TypeTag>
1542 void
1545 {
1546 auto loggerGuard = this->groupStateHelper().pushLogger();
1548 {
1549 for (const auto& well : well_container_) {
1550 const auto& cells = well->cells();
1551 x_local_.resize(cells.size());
1552
1553 for (size_t i = 0; i < cells.size(); ++i) {
1554 x_local_[i] = x[cells[i]];
1555 }
1556 well->recoverWellSolutionAndUpdateWellState(simulator_, x_local_,
1557 this->groupStateHelper(), this->wellState());
1558 }
1559 }
1560 OPM_END_PARALLEL_TRY_CATCH("recoverWellSolutionAndUpdateWellState() failed: ",
1561 simulator_.vanguard().grid().comm());
1562 }
1563
1564
1565 template<typename TypeTag>
1566 void
1568 recoverWellSolutionAndUpdateWellStateDomain(const BVector& x, const int domainIdx)
1569 {
1570 if (!nldd_) {
1571 OPM_THROW(std::logic_error, "Attempt to call NLDD method without a NLDD solver");
1572 }
1573
1574 return nldd_->recoverWellSolutionAndUpdateWellState(x, domainIdx);
1575 }
1576
1577
1578 template<typename TypeTag>
1581 getWellConvergence(const std::vector<Scalar>& B_avg, bool checkWellGroupControlsAndNetwork) const
1582 {
1583 // Get global (from all processes) convergence report.
1584 ConvergenceReport local_report;
1585 const int iterationIdx = simulator_.model().newtonMethod().numIterations();
1586 {
1587 auto logger_guard = this->groupStateHelper().pushLogger();
1588 for (const auto& well : well_container_) {
1589 if (well->isOperableAndSolvable() || well->wellIsStopped()) {
1590 local_report += well->getWellConvergence(
1591 this->groupStateHelper(), B_avg,
1592 iterationIdx > param_.strict_outer_iter_wells_);
1593 } else {
1594 ConvergenceReport report;
1595 using CR = ConvergenceReport;
1596 report.setWellFailed({CR::WellFailure::Type::Unsolvable, CR::Severity::Normal, -1, well->name()});
1597 local_report += report;
1598 }
1599 }
1600 } // logger_guard goes out of scope here, before the OpmLog::debug() calls below
1601
1602 const Opm::Parallel::Communication comm = grid().comm();
1603 ConvergenceReport report = gatherConvergenceReport(local_report, comm);
1604
1605 if (checkWellGroupControlsAndNetwork) {
1606 // the well_group_control_changed info is already communicated
1607 report.setWellGroupTargetsViolated(this->lastReport().well_group_control_changed);
1608 report.setNetworkNotYetBalancedForceAnotherNewtonIteration(network_needs_more_balancing_force_another_newton_iteration_);
1609 }
1610
1611 if (this->terminal_output_) {
1612 // Log debug messages for NaN or too large residuals.
1613 for (const auto& f : report.wellFailures()) {
1614 if (f.severity() == ConvergenceReport::Severity::NotANumber) {
1615 OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
1616 } else if (f.severity() == ConvergenceReport::Severity::TooLarge) {
1617 OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
1618 }
1619 }
1620 }
1621 return report;
1622 }
1623
1624
1625
1626
1627
1628 template<typename TypeTag>
1629 void
1632 {
1633 // TODO: checking isOperableAndSolvable() ?
1634 for (auto& well : well_container_) {
1635 well->calculateExplicitQuantities(simulator_, this->groupStateHelper());
1636 }
1637 }
1638
1639
1640
1641
1642
1643 template<typename TypeTag>
1644 bool
1646 updateWellControls(DeferredLogger& deferred_logger)
1647 {
1648 OPM_TIMEFUNCTION();
1649 if (!this->wellsActive()) {
1650 return false;
1651 }
1652 const int episodeIdx = simulator_.episodeIndex();
1653 const int iterationIdx = simulator_.model().newtonMethod().numIterations();
1654 const auto& comm = simulator_.vanguard().grid().comm();
1655 size_t iter = 0;
1656 bool changed_well_group = false;
1657 const Group& fieldGroup = this->schedule().getGroup("FIELD", episodeIdx);
1658 // Check group individual constraints.
1659 // iterate a few times to make sure all constraints are honored
1660 const std::size_t max_iter = param_.well_group_constraints_max_iterations_;
1661 while(!changed_well_group && iter < max_iter) {
1662 changed_well_group = updateGroupControls(fieldGroup, deferred_logger, episodeIdx, iterationIdx);
1663
1664 // Check wells' group constraints and communicate.
1665 bool changed_well_to_group = false;
1666 {
1667 OPM_TIMEBLOCK(UpdateWellControls);
1668 // For MS Wells a linear solve is performed below and the matrix might be singular.
1669 // We need to communicate the exception thrown to the others and rethrow.
1671 for (const auto& well : well_container_) {
1673 const bool changed_well = well->updateWellControl(
1674 simulator_, mode, this->groupStateHelper(), this->wellState()
1675 );
1676 if (changed_well) {
1677 changed_well_to_group = changed_well || changed_well_to_group;
1678 }
1679 }
1680 OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel: updating well controls failed: ",
1681 simulator_.gridView().comm());
1682 }
1683
1684 changed_well_to_group = comm.sum(static_cast<int>(changed_well_to_group));
1685 if (changed_well_to_group) {
1686 updateAndCommunicate(episodeIdx, iterationIdx);
1687 changed_well_group = true;
1688 }
1689
1690 // Check individual well constraints and communicate.
1691 bool changed_well_individual = false;
1692 {
1693 // For MS Wells a linear solve is performed below and the matrix might be singular.
1694 // We need to communicate the exception thrown to the others and rethrow.
1696 for (const auto& well : well_container_) {
1698 const bool changed_well = well->updateWellControl(
1699 simulator_, mode, this->groupStateHelper(), this->wellState()
1700 );
1701 if (changed_well) {
1702 changed_well_individual = changed_well || changed_well_individual;
1703 }
1704 }
1705 OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel: updating well controls failed: ",
1706 simulator_.gridView().comm());
1707 }
1708
1709 changed_well_individual = comm.sum(static_cast<int>(changed_well_individual));
1710 if (changed_well_individual) {
1711 updateAndCommunicate(episodeIdx, iterationIdx);
1712 changed_well_group = true;
1713 }
1714 iter++;
1715 }
1716
1717 // update wsolvent fraction for REIN wells
1718 this->updateWsolvent(fieldGroup, episodeIdx, this->nupcolWellState());
1719
1720 return changed_well_group;
1721 }
1722
1723
1724 template<typename TypeTag>
1725 void
1727 updateAndCommunicate(const int reportStepIdx,
1728 const int iterationIdx)
1729 {
1730 this->updateAndCommunicateGroupData(reportStepIdx,
1731 iterationIdx,
1732 param_.nupcol_group_rate_tolerance_,
1733 /*update_wellgrouptarget*/ true);
1734
1735 // updateWellStateWithTarget might throw for multisegment wells hence we
1736 // have a parallel try catch here to thrown on all processes.
1738 // if a well or group change control it affects all wells that are under the same group
1739 for (const auto& well : well_container_) {
1740 // We only want to update wells under group-control here
1741 const auto& ws = this->wellState().well(well->indexOfWell());
1742 if (ws.production_cmode == Well::ProducerCMode::GRUP ||
1743 ws.injection_cmode == Well::InjectorCMode::GRUP)
1744 {
1745 well->updateWellStateWithTarget(
1746 simulator_, this->groupStateHelper(), this->wellState()
1747 );
1748 }
1749 }
1750 OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updateAndCommunicate failed: ",
1751 simulator_.gridView().comm())
1752 this->updateAndCommunicateGroupData(reportStepIdx,
1753 iterationIdx,
1754 param_.nupcol_group_rate_tolerance_,
1755 /*update_wellgrouptarget*/ true);
1756 }
1757
1758 template<typename TypeTag>
1759 bool
1761 updateGroupControls(const Group& group,
1762 DeferredLogger& deferred_logger,
1763 const int reportStepIdx,
1764 const int iterationIdx)
1765 {
1766 OPM_TIMEFUNCTION();
1767 bool changed = false;
1768 // restrict the number of group switches but only after nupcol iterations.
1769 const int nupcol = this->schedule()[reportStepIdx].nupcol();
1770 const int max_number_of_group_switches = param_.max_number_of_group_switches_;
1771 const bool update_group_switching_log = iterationIdx >= nupcol;
1772 const bool changed_hc = this->checkGroupHigherConstraints(group, deferred_logger, reportStepIdx, max_number_of_group_switches, update_group_switching_log);
1773 if (changed_hc) {
1774 changed = true;
1775 updateAndCommunicate(reportStepIdx, iterationIdx);
1776 }
1777
1778 bool changed_individual =
1780 updateGroupIndividualControl(group,
1781 reportStepIdx,
1782 max_number_of_group_switches,
1783 update_group_switching_log,
1784 this->switched_inj_groups_,
1785 this->switched_prod_groups_,
1786 this->closed_offending_wells_,
1787 this->groupState(),
1788 this->wellState(),
1789 deferred_logger);
1790
1791 if (changed_individual) {
1792 changed = true;
1793 updateAndCommunicate(reportStepIdx, iterationIdx);
1794 }
1795 // call recursively down the group hierarchy
1796 for (const std::string& groupName : group.groups()) {
1797 bool changed_this = updateGroupControls( this->schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx,iterationIdx);
1798 changed = changed || changed_this;
1799 }
1800 return changed;
1801 }
1802
1803 template<typename TypeTag>
1804 void
1806 updateWellTestState(const double simulationTime, WellTestState& wellTestState)
1807 {
1808 OPM_TIMEFUNCTION();
1809 auto logger_guard = this->groupStateHelper().pushLogger();
1810 auto& local_deferredLogger = this->groupStateHelper().deferredLogger();
1811 for (const auto& well : well_container_) {
1812 const auto& wname = well->name();
1813 const auto wasClosed = wellTestState.well_is_closed(wname);
1814 well->checkWellOperability(simulator_,
1815 this->wellState(),
1816 this->groupStateHelper());
1817 const bool under_zero_target =
1818 well->wellUnderZeroGroupRateTarget(this->groupStateHelper());
1819 well->updateWellTestState(this->wellState().well(wname),
1820 simulationTime,
1821 /*writeMessageToOPMLog=*/ true,
1822 under_zero_target,
1823 wellTestState,
1824 local_deferredLogger);
1825
1826 if (!wasClosed && wellTestState.well_is_closed(wname)) {
1827 this->closed_this_step_.insert(wname);
1828
1829 // maybe open a new well
1830 const WellEconProductionLimits& econ_production_limits = well->wellEcl().getEconLimits();
1831 if (econ_production_limits.validFollowonWell()) {
1832 const auto episode_idx = simulator_.episodeIndex();
1833 const auto follow_on_well = econ_production_limits.followonWell();
1834 if (!this->schedule().hasWell(follow_on_well, episode_idx)) {
1835 const auto msg = fmt::format("Well {} was closed. But the given follow on well {} does not exist."
1836 "The simulator continues without opening a follow on well.",
1837 wname, follow_on_well);
1838 local_deferredLogger.warning(msg);
1839 }
1840 auto& ws = this->wellState().well(follow_on_well);
1841 const bool success = ws.updateStatus(WellStatus::OPEN);
1842 if (success) {
1843 const auto msg = fmt::format("Well {} was closed. The follow on well {} opens instead.", wname, follow_on_well);
1844 local_deferredLogger.info(msg);
1845 } else {
1846 const auto msg = fmt::format("Well {} was closed. The follow on well {} is already open.", wname, follow_on_well);
1847 local_deferredLogger.warning(msg);
1848 }
1849 }
1850
1851 }
1852 }
1853
1854 for (const auto& [group_name, to] : this->closed_offending_wells_) {
1855 if (this->hasOpenLocalWell(to.second) &&
1856 !this->wasDynamicallyShutThisTimeStep(to.second))
1857 {
1858 wellTestState.close_well(to.second,
1859 WellTestConfig::Reason::GROUP,
1860 simulationTime);
1861 this->updateClosedWellsThisStep(to.second);
1862 const std::string msg =
1863 fmt::format("Procedure on exceeding {} limit is WELL for group {}. "
1864 "Well {} is {}.",
1865 to.first,
1866 group_name,
1867 to.second,
1868 "shut");
1869 local_deferredLogger.info(msg);
1870 }
1871 }
1872 }
1873
1874
1875 template<typename TypeTag>
1876 void
1878 const WellState<Scalar, IndexTraits>& well_state_copy,
1879 std::string& exc_msg,
1880 ExceptionType::ExcEnum& exc_type)
1881 {
1882 OPM_TIMEFUNCTION();
1883 const int np = this->numPhases();
1884 std::vector<Scalar> potentials;
1885 const auto& well = well_container_[widx];
1886 std::string cur_exc_msg;
1887 auto cur_exc_type = ExceptionType::NONE;
1888 try {
1889 well->computeWellPotentials(simulator_, well_state_copy, this->groupStateHelper(), potentials);
1890 }
1891 // catch all possible exception and store type and message.
1892 OPM_PARALLEL_CATCH_CLAUSE(cur_exc_type, cur_exc_msg);
1893 if (cur_exc_type != ExceptionType::NONE) {
1894 exc_msg += fmt::format("\nFor well {}: {}", well->name(), cur_exc_msg);
1895 }
1896 exc_type = std::max(exc_type, cur_exc_type);
1897 // Store it in the well state
1898 // potentials is resized and set to zero in the beginning of well->ComputeWellPotentials
1899 // and updated only if sucessfull. i.e. the potentials are zero for exceptions
1900 auto& ws = this->wellState().well(well->indexOfWell());
1901 for (int p = 0; p < np; ++p) {
1902 // make sure the potentials are positive
1903 ws.well_potentials[p] = std::max(Scalar{0.0}, potentials[p]);
1904 }
1905 }
1906
1907
1908
1909 template <typename TypeTag>
1910 void
1913 {
1914 for (const auto& wellPtr : this->well_container_) {
1915 this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger);
1916 }
1917 }
1918
1919
1920
1921
1922
1923 template <typename TypeTag>
1924 void
1926 calculateProductivityIndexValuesShutWells(const int reportStepIdx,
1927 DeferredLogger& deferred_logger)
1928 {
1929 // For the purpose of computing PI/II values, it is sufficient to
1930 // construct StandardWell instances only. We don't need to form
1931 // well objects that honour the 'isMultisegment()' flag of the
1932 // corresponding "this->wells_ecl_[shutWell]".
1933
1934 for (const auto& shutWell : this->local_shut_wells_) {
1935 if (!this->wells_ecl_[shutWell].hasConnections()) {
1936 // No connections in this well. Nothing to do.
1937 continue;
1938 }
1939
1940 auto wellPtr = this->template createTypedWellPointer
1941 <StandardWell<TypeTag>>(shutWell, reportStepIdx);
1942
1943 wellPtr->init(this->depth_, this->gravity_, this->B_avg_, true);
1944
1945 this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger);
1946 }
1947 }
1948
1949
1950
1951
1952
1953 template <typename TypeTag>
1954 void
1957 DeferredLogger& deferred_logger)
1958 {
1959 wellPtr->updateProductivityIndex(this->simulator_,
1960 this->prod_index_calc_[wellPtr->indexOfWell()],
1961 this->wellState(),
1962 deferred_logger);
1963 }
1964
1965
1966
1967 template<typename TypeTag>
1968 void
1970 prepareTimeStep(DeferredLogger& deferred_logger)
1971 {
1972 // Check if there is a network with active prediction wells at this time step.
1973 const auto episodeIdx = simulator_.episodeIndex();
1974 this->network_.updateActiveState(episodeIdx);
1975
1976 // Rebalance the network initially if any wells in the network have status changes
1977 // (Need to check this before clearing events)
1978 const bool do_prestep_network_rebalance =
1979 param_.pre_solve_network_ && this->network_.needPreStepRebalance(episodeIdx);
1980
1981 for (const auto& well : well_container_) {
1982 auto& events = this->wellState().well(well->indexOfWell()).events;
1983 if (events.hasEvent(WellState<Scalar, IndexTraits>::event_mask)) {
1984 well->updateWellStateWithTarget(
1985 simulator_, this->groupStateHelper(), this->wellState()
1986 );
1987 well->updatePrimaryVariables(this->groupStateHelper());
1988 // There is no new well control change input within a report step,
1989 // so next time step, the well does not consider to have effective events anymore.
1991 }
1992 // these events only work for the first time step within the report step
1993 if (events.hasEvent(ScheduleEvents::REQUEST_OPEN_WELL)) {
1994 events.clearEvent(ScheduleEvents::REQUEST_OPEN_WELL);
1995 }
1996 // solve the well equation initially to improve the initial solution of the well model
1997 if (param_.solve_welleq_initially_ && well->isOperableAndSolvable()) {
1998 try {
1999 well->solveWellEquation(
2000 simulator_, this->groupStateHelper(), this->wellState()
2001 );
2002 } catch (const std::exception& e) {
2003 const std::string msg = "Compute initial well solution for " + well->name() + " initially failed. Continue with the previous rates";
2004 deferred_logger.warning("WELL_INITIAL_SOLVE_FAILED", msg);
2005 }
2006 }
2007 // If we're using local well solves that include control switches, they also update
2008 // operability, so reset before main iterations begin
2009 well->resetWellOperability();
2010 }
2011 updatePrimaryVariables();
2012
2013 // Actually do the pre-step network rebalance, using the updated well states and initial solutions
2014 if (do_prestep_network_rebalance) {
2015 network_.doPreStepRebalance(deferred_logger);
2016 }
2017 }
2018
2019 template<typename TypeTag>
2020 void
2023 {
2024 std::vector< Scalar > B_avg(numConservationQuantities(), Scalar() );
2025 const auto& grid = simulator_.vanguard().grid();
2026 const auto& gridView = grid.leafGridView();
2027 ElementContext elemCtx(simulator_);
2028
2030 for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
2031 elemCtx.updatePrimaryStencil(elem);
2032 elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
2033
2034 const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
2035 const auto& fs = intQuants.fluidState();
2036
2037 for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
2038 {
2039 if (!FluidSystem::phaseIsActive(phaseIdx)) {
2040 continue;
2041 }
2042
2043 const unsigned compIdx = FluidSystem::canonicalToActiveCompIdx(FluidSystem::solventComponentIndex(phaseIdx));
2044 auto& B = B_avg[ compIdx ];
2045
2046 B += 1 / fs.invB(phaseIdx).value();
2047 }
2048 if constexpr (has_solvent_) {
2049 auto& B = B_avg[solventSaturationIdx];
2050 B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
2051 }
2052 }
2053 OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updateAverageFormationFactor() failed: ", grid.comm())
2054
2055 // compute global average
2056 grid.comm().sum(B_avg.data(), B_avg.size());
2057 B_avg_.resize(B_avg.size());
2058 std::ranges::transform(B_avg, B_avg_.begin(),
2059 [gcells = global_num_cells_](const auto bval)
2060 { return bval / gcells; });
2061 }
2062
2063
2064
2065
2066
2067 template<typename TypeTag>
2068 void
2071 {
2072 for (const auto& well : well_container_) {
2073 well->updatePrimaryVariables(this->groupStateHelper());
2074 }
2075 }
2076
2077 template<typename TypeTag>
2078 void
2080 {
2081 const auto& grid = simulator_.vanguard().grid();
2082 const auto& eclProblem = simulator_.problem();
2083 const unsigned numCells = grid.size(/*codim=*/0);
2084
2085 this->pvt_region_idx_.resize(numCells);
2086 for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
2087 this->pvt_region_idx_[cellIdx] =
2088 eclProblem.pvtRegionIndex(cellIdx);
2089 }
2090 }
2091
2092 // The number of components in the model.
2093 template<typename TypeTag>
2094 int
2096 {
2097 // The numPhases() functions returns 1-3, depending on which
2098 // of the (oil, water, gas) phases are active. For each of those phases,
2099 // if the phase is active the corresponding component is present and
2100 // conserved.
2101 // Apart from (oil, water, gas), in the current well model only solvent
2102 // is explicitly modelled as a conserved quantity (polymer, energy, salt
2103 // etc. are not), unlike the reservoir part where all such quantities are
2104 // conserved. This function must therefore be updated when/if we add
2105 // more conserved quantities in the well model.
2106 return this->numPhases() + has_solvent_;
2107 }
2108
2109 template<typename TypeTag>
2110 void
2112 {
2113 const auto& eclProblem = simulator_.problem();
2114 depth_.resize(local_num_cells_);
2115 for (unsigned cellIdx = 0; cellIdx < local_num_cells_; ++cellIdx) {
2116 depth_[cellIdx] = eclProblem.dofCenterDepth(cellIdx);
2117 }
2118 }
2119
2120 template<typename TypeTag>
2123 getWell(const std::string& well_name) const
2124 {
2125 // finding the iterator of the well in wells_ecl
2126 auto well = std::find_if(well_container_.begin(),
2127 well_container_.end(),
2128 [&well_name](const WellInterfacePtr& elem)->bool {
2129 return elem->name() == well_name;
2130 });
2131
2132 assert(well != well_container_.end());
2133
2134 return **well;
2135 }
2136
2137 template <typename TypeTag>
2138 int
2140 reportStepIndex() const
2141 {
2142 return std::max(this->simulator_.episodeIndex(), 0);
2143 }
2144
2145
2146
2147
2148
2149 template<typename TypeTag>
2150 void
2152 calcResvCoeff(const int fipnum,
2153 const int pvtreg,
2154 const std::vector<Scalar>& production_rates,
2155 std::vector<Scalar>& resv_coeff) const
2156 {
2157 rateConverter_->calcCoeff(fipnum, pvtreg, production_rates, resv_coeff);
2158 }
2159
2160 template<typename TypeTag>
2161 void
2163 calcInjResvCoeff(const int fipnum,
2164 const int pvtreg,
2165 std::vector<Scalar>& resv_coeff) const
2166 {
2167 rateConverter_->calcInjCoeff(fipnum, pvtreg, resv_coeff);
2168 }
2169
2170
2171 template <typename TypeTag>
2172 void
2175 {
2176 if constexpr (energyModuleType_ == EnergyModules::FullyImplicitThermal) {
2177 const int np = this->numPhases();
2178 const int nw = this->numLocalWells();
2179 for (auto wellID = 0*nw; wellID < nw; ++wellID) {
2180 const Well& well = this->wells_ecl_[wellID];
2181 auto& ws = this->wellState().well(wellID);
2182 if (well.isInjector()) {
2183 if (ws.status != WellStatus::STOP) {
2184 this->wellState().well(wellID).temperature = well.inj_temperature();
2185 continue;
2186 }
2187 }
2188 std::array<Scalar,2> weighted{0.0,0.0};
2189 auto& [weighted_temperature, total_weight] = weighted;
2190 const auto& well_info = this->local_parallel_well_info_[wellID].get();
2191 using int_type = decltype(this->well_perf_data_[wellID].size());
2192 for (int_type perf = 0, end_perf = this->well_perf_data_[wellID].size(); perf < end_perf; ++perf) {
2193 const int cell_idx = this->well_perf_data_[wellID][perf].cell_index;
2194 const auto& intQuants = simulator_.model().intensiveQuantities(cell_idx, /*timeIdx=*/0);
2195 const auto& fs = intQuants.fluidState();
2196 Scalar weight_factor = computeTemperatureWeightFactor(perf, np, fs, ws);
2197 total_weight += weight_factor;
2198 weighted_temperature += weight_factor * fs.temperature(/*phaseIdx*/0).value();
2199 }
2200 well_info.communication().sum(weighted.data(), 2);
2201 this->wellState().well(wellID).temperature = weighted_temperature / total_weight;
2202 }
2203 }
2204 }
2205
2206
2207 template <typename TypeTag>
2209 assignWellTracerRates(data::Wells& wsrpt) const
2210 {
2211 const auto reportStepIdx = static_cast<unsigned int>(this->reportStepIndex());
2212 const auto& trMod = this->simulator_.problem().tracerModel();
2213
2214 BlackoilWellModelGeneric<Scalar, IndexTraits>::assignWellTracerRates(wsrpt, trMod.getWellTracerRates(), reportStepIdx);
2215 BlackoilWellModelGeneric<Scalar, IndexTraits>::assignWellTracerRates(wsrpt, trMod.getWellFreeTracerRates(), reportStepIdx);
2216 BlackoilWellModelGeneric<Scalar, IndexTraits>::assignWellTracerRates(wsrpt, trMod.getWellSolTracerRates(), reportStepIdx);
2217
2218 this->assignMswTracerRates(wsrpt, trMod.getMswTracerRates(), reportStepIdx);
2219 }
2220
2221} // namespace Opm
2222
2223#endif // OPM_BLACKOILWELLMODEL_IMPL_HEADER_INCLUDED
#define OPM_END_PARALLEL_TRY_CATCH_LOG(obptc_logger, obptc_prefix, obptc_output, comm)
Catch exception, log, and throw in a parallel try-catch clause.
Definition: DeferredLoggingErrorHelpers.hpp:202
#define OPM_DEFLOG_THROW(Exception, message, deferred_logger)
Definition: DeferredLoggingErrorHelpers.hpp:45
#define OPM_END_PARALLEL_TRY_CATCH(prefix, comm)
Catch exception and throw in a parallel try-catch clause.
Definition: DeferredLoggingErrorHelpers.hpp:192
#define OPM_PARALLEL_CATCH_CLAUSE(obptc_exc_type, obptc_exc_msg)
Inserts catch classes for the parallel try-catch.
Definition: DeferredLoggingErrorHelpers.hpp:166
#define OPM_BEGIN_PARALLEL_TRY_CATCH()
Macro to setup the try of a parallel try-catch.
Definition: DeferredLoggingErrorHelpers.hpp:158
void logAndCheckForExceptionsAndThrow(Opm::DeferredLogger &deferred_logger, Opm::ExceptionType::ExcEnum exc_type, const std::string &message, const bool terminal_output, Opm::Parallel::Communication comm)
Definition: DeferredLoggingErrorHelpers.hpp:111
Class for handling constraints for the blackoil well model.
Definition: BlackoilWellModelConstraints.hpp:42
Class for handling the gaslift in the blackoil well model.
Definition: BlackoilWellModelGasLift.hpp:96
Class for handling the blackoil well model.
Definition: BlackoilWellModelGeneric.hpp:96
BlackoilWellModelWBP< GetPropType< TypeTag, Properties::Scalar >, GetPropType< TypeTag, Properties::FluidSystem >::IndexTraitsType > wbp_
Definition: BlackoilWellModelGeneric.hpp:519
std::vector< ParallelWellInfo< GetPropType< TypeTag, Properties::Scalar > > > parallel_well_info_
Definition: BlackoilWellModelGeneric.hpp:546
void assignWellTracerRates(data::Wells &wsrpt, const WellTracerRates &wellTracerRates, const unsigned reportStep) const
Class for handling the guide rates in the blackoil well model.
Definition: BlackoilWellModelGuideRates.hpp:47
Class for handling the blackoil well model.
Definition: BlackoilWellModel.hpp:98
void initializeGroupStructure(const int reportStepIdx)
Definition: BlackoilWellModel_impl.hpp:294
void calcResvCoeff(const int fipnum, const int pvtreg, const std::vector< Scalar > &production_rates, std::vector< Scalar > &resv_coeff) const override
Definition: BlackoilWellModel_impl.hpp:2152
void prepareTimeStep(DeferredLogger &deferred_logger)
Definition: BlackoilWellModel_impl.hpp:1970
std::tuple< bool, bool, Scalar > updateWellControlsAndNetworkIteration(const bool mandatory_network_balance, const bool relax_network_tolerance, const bool optimize_gas_lift, const double dt, DeferredLogger &local_deferredLogger)
Definition: BlackoilWellModel_impl.hpp:1284
bool updateGroupControls(const Group &group, DeferredLogger &deferred_logger, const int reportStepIdx, const int iterationIdx)
Definition: BlackoilWellModel_impl.hpp:1761
WellInterfacePtr createWellPointer(const int wellID, const int report_step) const
Definition: BlackoilWellModel_impl.hpp:1082
void prepareWellsBeforeAssembling(const double dt)
Definition: BlackoilWellModel_impl.hpp:1360
void init()
Definition: BlackoilWellModel_impl.hpp:163
const Simulator & simulator() const
Definition: BlackoilWellModel.hpp:370
std::vector< Scalar > depth_
Definition: BlackoilWellModel.hpp:516
std::size_t global_num_cells_
Definition: BlackoilWellModel.hpp:512
GetPropType< TypeTag, Properties::Scalar > Scalar
Definition: BlackoilWellModel.hpp:107
void initWellContainer(const int reportStepIdx) override
Definition: BlackoilWellModel_impl.hpp:182
void beginReportStep(const int time_step)
Definition: BlackoilWellModel_impl.hpp:199
const WellInterface< TypeTag > & getWell(const std::string &well_name) const
Definition: BlackoilWellModel_impl.hpp:2123
GetPropType< TypeTag, Properties::FluidSystem > FluidSystem
Definition: BlackoilWellModel.hpp:103
Dune::FieldVector< Scalar, numEq > VectorBlockType
Definition: BlackoilWellModel.hpp:129
GetPropType< TypeTag, Properties::ElementContext > ElementContext
Definition: BlackoilWellModel.hpp:104
GetPropType< TypeTag, Properties::Grid > Grid
Definition: BlackoilWellModel.hpp:101
int numConservationQuantities() const
Definition: BlackoilWellModel_impl.hpp:2095
bool updateWellControls(DeferredLogger &deferred_logger)
Definition: BlackoilWellModel_impl.hpp:1646
int reportStepIndex() const
Definition: BlackoilWellModel_impl.hpp:2140
void calculateProductivityIndexValues(DeferredLogger &deferred_logger) override
Definition: BlackoilWellModel_impl.hpp:1912
void extractLegacyDepth_()
Definition: BlackoilWellModel_impl.hpp:2111
void extractLegacyCellPvtRegionIndex_()
Definition: BlackoilWellModel_impl.hpp:2079
void recoverWellSolutionAndUpdateWellStateDomain(const BVector &x, const int domainIdx)
Definition: BlackoilWellModel_impl.hpp:1568
void updateAverageFormationFactor()
Definition: BlackoilWellModel_impl.hpp:2022
GetPropType< TypeTag, Properties::Simulator > Simulator
Definition: BlackoilWellModel.hpp:106
void initializeWellState(const int timeStepIdx)
Definition: BlackoilWellModel_impl.hpp:830
void assemble(const int iterationIdx, const double dt)
Definition: BlackoilWellModel_impl.hpp:1158
const Grid & grid() const
Definition: BlackoilWellModel.hpp:367
void updatePrimaryVariables()
Definition: BlackoilWellModel_impl.hpp:2070
void computeWellTemperature()
Definition: BlackoilWellModel_impl.hpp:2174
void addWellPressureEquations(PressureMatrix &jacobian, const BVector &weights, const bool use_well_weights) const
Definition: BlackoilWellModel_impl.hpp:1469
const SimulatorReportSingle & lastReport() const
Definition: BlackoilWellModel_impl.hpp:708
bool updateWellControlsAndNetwork(const bool mandatory_network_balance, const double dt, DeferredLogger &local_deferredLogger)
Definition: BlackoilWellModel_impl.hpp:1225
void addWellContributions(SparseMatrixAdapter &jacobian) const
Definition: BlackoilWellModel_impl.hpp:1459
void assembleWellEq(const double dt)
Definition: BlackoilWellModel_impl.hpp:1348
WellInterfacePtr createWellForWellTest(const std::string &well_name, const int report_step, DeferredLogger &deferred_logger) const
Definition: BlackoilWellModel_impl.hpp:1133
void calculateExplicitQuantities() const
Definition: BlackoilWellModel_impl.hpp:1631
Dune::BCRSMatrix< Opm::MatrixBlock< Scalar, 1, 1 > > PressureMatrix
Definition: BlackoilWellModel.hpp:289
void computeTotalRatesForDof(RateVector &rate, unsigned globalIdx) const
Definition: BlackoilWellModel_impl.hpp:793
void beginTimeStep()
Definition: BlackoilWellModel_impl.hpp:326
void updateAndCommunicate(const int reportStepIdx, const int iterationIdx)
Definition: BlackoilWellModel_impl.hpp:1727
GetPropType< TypeTag, Properties::RateVector > RateVector
Definition: BlackoilWellModel.hpp:108
void calcInjResvCoeff(const int fipnum, const int pvtreg, std::vector< Scalar > &resv_coeff) const override
Definition: BlackoilWellModel_impl.hpp:2163
void initializeLocalWellStructure(const int reportStepIdx, const bool enableWellPIScaling)
Definition: BlackoilWellModel_impl.hpp:248
Dune::BlockVector< VectorBlockType > BVector
Definition: BlackoilWellModel.hpp:130
BlackoilWellModel(Simulator &simulator)
Definition: BlackoilWellModel_impl.hpp:76
void wellTesting(const int timeStepIdx, const double simulationTime, DeferredLogger &deferred_logger)
Definition: BlackoilWellModel_impl.hpp:631
ConvergenceReport getWellConvergence(const std::vector< Scalar > &B_avg, const bool checkWellGroupControlsAndNetwork=false) const
Definition: BlackoilWellModel_impl.hpp:1581
typename FluidSystem::IndexTraitsType IndexTraits
Definition: BlackoilWellModel.hpp:114
void updateCellRatesForDomain(int domainIndex, const std::map< std::string, int > &well_domain_map)
Definition: BlackoilWellModel_impl.hpp:1406
void assembleWellEqWithoutIteration(const double dt)
Definition: BlackoilWellModel_impl.hpp:1374
void updateCellRates()
Definition: BlackoilWellModel_impl.hpp:1394
std::size_t local_num_cells_
Definition: BlackoilWellModel.hpp:514
bool alternative_well_rate_init_
Definition: BlackoilWellModel.hpp:517
void timeStepSucceeded(const double simulationTime, const double dt)
Definition: BlackoilWellModel_impl.hpp:718
std::unique_ptr< WellType > createTypedWellPointer(const int wellID, const int time_step) const
Definition: BlackoilWellModel_impl.hpp:1102
void computePotentials(const std::size_t widx, const WellState< Scalar, IndexTraits > &well_state_copy, std::string &exc_msg, ExceptionType::ExcEnum &exc_type) override
Definition: BlackoilWellModel_impl.hpp:1877
Simulator & simulator_
Definition: BlackoilWellModel.hpp:486
void createWellContainer(const int report_step) override
Definition: BlackoilWellModel_impl.hpp:873
std::unique_ptr< WellInterface< TypeTag > > WellInterfacePtr
Definition: BlackoilWellModel.hpp:187
void updateWellTestState(const double simulationTime, WellTestState &wellTestState)
upate the wellTestState related to economic limits
Definition: BlackoilWellModel_impl.hpp:1806
void addReservoirSourceTerms(GlobalEqVector &residual, const std::vector< typename SparseMatrixAdapter::MatrixBlock * > &diagMatAddress) const
Definition: BlackoilWellModel_impl.hpp:1491
int compressedIndexForInterior(int cartesian_cell_idx) const override
get compressed index for interior cells (-1, otherwise
Definition: BlackoilWellModel.hpp:342
void recoverWellSolutionAndUpdateWellState(const BVector &x)
Definition: BlackoilWellModel_impl.hpp:1544
void addWellPressureEquationsStruct(PressureMatrix &jacobian) const
Definition: BlackoilWellModel_impl.hpp:1521
void calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger &deferred_logger) override
Definition: BlackoilWellModel_impl.hpp:1926
void endReportStep()
Definition: BlackoilWellModel_impl.hpp:691
void initializeSources(typename ParallelWBPCalculation< Scalar >::GlobalToLocal index, typename ParallelWBPCalculation< Scalar >::Evaluator eval)
Definition: ConvergenceReport.hpp:38
void setWellFailed(const WellFailure &wf)
Definition: ConvergenceReport.hpp:272
void setWellGroupTargetsViolated(const bool wellGroupTargetsViolated)
Definition: ConvergenceReport.hpp:290
const std::vector< WellFailure > & wellFailures() const
Definition: ConvergenceReport.hpp:380
void setNetworkNotYetBalancedForceAnotherNewtonIteration(const bool network_needs_more_balancing_force_another_newton_iteration)
Definition: ConvergenceReport.hpp:295
Definition: DeferredLogger.hpp:57
void info(const std::string &tag, const std::string &message)
void warning(const std::string &tag, const std::string &message)
void debug(const std::string &tag, const std::string &message)
std::map< std::string, std::pair< const Well *, int > > GLiftEclWells
Definition: GasLiftGroupInfo.hpp:64
Guard for managing DeferredLogger lifecycle in ReservoirCoupling.
Definition: ReservoirCoupling.hpp:88
Definition: StandardWell.hpp:60
virtual void init(const std::vector< Scalar > &depth_arg, const Scalar gravity_arg, const std::vector< Scalar > &B_avg, const bool changed_to_open_this_step) override
Definition: StandardWell_impl.hpp:76
Definition: WellContributions.hpp:51
void alloc()
Allocate memory for the StandardWells.
void setBlockSize(unsigned int dim, unsigned int dim_wells)
void addNumBlocks(unsigned int numBlocks)
int indexOfWell() const
Index of well in the wells struct and wellState.
Definition: WellInterface.hpp:77
virtual void updateProductivityIndex(const Simulator &simulator, const WellProdIndexCalculator< Scalar > &wellPICalc, WellStateType &well_state, DeferredLogger &deferred_logger) const =0
bool updateWellControl(const Simulator &simulator, const IndividualOrGroup iog, const GroupStateHelperType &groupStateHelper, WellStateType &well_state)
Definition: WellInterface_impl.hpp:189
Definition: WellState.hpp:66
ExcEnum
Definition: DeferredLogger.hpp:45
@ NONE
Definition: DeferredLogger.hpp:46
Dune::Communication< MPIComm > Communication
Definition: ParallelCommunication.hpp:30
Definition: blackoilbioeffectsmodules.hh:43
ConvergenceReport gatherConvergenceReport(const ConvergenceReport &local_report, Parallel::Communication communicator)
std::string to_string(const ConvergenceReport::ReservoirFailure::Type t)
A struct for returning timing data from a simulator to its caller.
Definition: SimulatorReport.hpp:34