Brine.hpp
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef OPM_BRINE_HPP
29#define OPM_BRINE_HPP
30
33
34namespace Opm {
35
44template <class Scalar, class H2O>
45class Brine : public Component<Scalar, Brine<Scalar, H2O> >
46{
47public:
50
54 static const char* name()
55 { return "Brine"; }
56
60 static bool gasIsIdeal()
61 { return H2O::gasIsIdeal(); }
62
66 static bool gasIsCompressible()
67 { return H2O::gasIsCompressible(); }
68
73 { return H2O::liquidIsCompressible(); }
74
81 {
82 const Scalar M1 = H2O::molarMass();
83 constexpr Scalar M2 = 58e-3; // molar mass of NaCl [kg/mol]
84 const Scalar X2 = salinity; // mass fraction of salt in brine
85 return M1*M2/(M2 + X2*(M1 - M2));
86 }
87
92 { return H2O::criticalTemperature(); /* [K] */ }
93
98 { return H2O::criticalPressure(); /* [N/m^2] */ }
99
104 { return H2O::criticalVolume(); /* [m3/kmol] */ }
105
110 { return H2O::acentricFactor(); }
111
116 { return H2O::tripleTemperature(); /* [K] */ }
117
122 { return H2O::triplePressure(); /* [N/m^2] */ }
123
127 template <class Evaluation>
128 static Evaluation vaporPressure(const Evaluation& T)
129 { return H2O::vaporPressure(T); /* [N/m^2] */ }
130
134 template <class Evaluation>
135 static Evaluation gasEnthalpy(const Evaluation& temperature,
136 const Evaluation& pressure)
137 { return H2O::gasEnthalpy(temperature, pressure); /* [J/kg] */ }
138
147 template <class Evaluation>
148 static Evaluation liquidEnthalpy(const Evaluation& temperature,
149 const Evaluation& pressure)
150 {
151 // Numerical coefficents from Palliser and McKibbin
152 static constexpr Scalar f[] = {
153 2.63500e-1, 7.48368e-6, 1.44611e-6, -3.80860e-10
154 };
155
156 // Numerical coefficents from Michaelides for the enthalpy of brine
157 static constexpr Scalar a[4][3] = {
158 { -9633.6, -4080.0, +286.49 },
159 { +166.58, +68.577, -4.6856 },
160 { -0.90963, -0.36524, +0.249667e-1 },
161 { +0.17965e-2, +0.71924e-3, -0.4900e-4 }
162 };
163
164 const Evaluation theta = temperature - 273.15;
165
166 Evaluation S = salinity;
167 const Evaluation S_lSAT =
168 f[0]
169 + f[1]*theta
170 + f[2]*pow(theta, 2)
171 + f[3]*pow(theta, 3);
172
173 // Regularization
174 if (S > S_lSAT)
175 S = S_lSAT;
176
177 const Evaluation hw = H2O::liquidEnthalpy(temperature, pressure)/1e3; // [kJ/kg]
178
179 // From Daubert and Danner
180 const Evaluation h_NaCl =
181 (3.6710e4*temperature
182 + (6.2770e1/2)*temperature*temperature
183 - (6.6670e-2/3)*temperature*temperature*temperature
184 + (2.8000e-5/4)*pow(temperature, 4.0))/58.44e3
185 - 2.045698e+02; // [kJ/kg]
186
187 const Evaluation m = S/(1-S)/58.44e-3;
188
189 Evaluation d_h = 0;
190 for (int i = 0; i<=3; ++i) {
191 for (int j = 0; j <= 2; ++j) {
192 d_h += a[i][j] * pow(theta, i) * pow(m, j);
193 }
194 }
195
196 const Evaluation delta_h = 4.184/(1e3 + (58.44 * m))*d_h;
197
198 // Enthalpy of brine
199 const Evaluation h_ls = (1-S)*hw + S*h_NaCl + S*delta_h; // [kJ/kg]
200 return h_ls*1e3; // convert to [J/kg]
201 }
202
203
207 template <class Evaluation>
208 static Evaluation liquidHeatCapacity(const Evaluation& temperature,
209 const Evaluation& pressure)
210 {
211 Scalar eps = scalarValue(temperature)*1e-8;
212 return (liquidEnthalpy(temperature + eps, pressure) - liquidEnthalpy(temperature, pressure))/eps;
213 }
214
218 template <class Evaluation>
219 static Evaluation gasHeatCapacity(const Evaluation& temperature,
220 const Evaluation& pressure)
221 { return H2O::gasHeatCapacity(temperature, pressure); }
222
226 template <class Evaluation>
227 static Evaluation gasInternalEnergy(const Evaluation& temperature,
228 const Evaluation& pressure)
229 {
230 return
231 gasEnthalpy(temperature, pressure) -
232 pressure/gasDensity(temperature, pressure);
233 }
234
238 template <class Evaluation>
239 static Evaluation liquidInternalEnergy(const Evaluation& temperature,
240 const Evaluation& pressure)
241 {
242 return
243 liquidEnthalpy(temperature, pressure) -
244 pressure/liquidDensity(temperature, pressure);
245 }
246
250 template <class Evaluation>
251 static Evaluation gasDensity(const Evaluation& temperature, const Evaluation& pressure)
252 { return H2O::gasDensity(temperature, pressure); }
253
261 template <class Evaluation>
262 static Evaluation liquidDensity(const Evaluation& temperature, const Evaluation& pressure, bool extrapolate = false)
263 {
264 Evaluation tempC = temperature - 273.15;
265 Evaluation pMPa = pressure/1.0E6;
266
267 const Evaluation rhow = H2O::liquidDensity(temperature, pressure, extrapolate);
268 return
269 rhow +
270 1000*salinity*(
271 0.668 +
272 0.44*salinity +
273 1.0E-6*(
274 300*pMPa -
275 2400*pMPa*salinity +
276 tempC*(
277 80.0 -
278 3*tempC -
279 3300*salinity -
280 13*pMPa +
281 47*pMPa*salinity)));
282 }
283
287 template <class Evaluation>
288 static Evaluation gasPressure(const Evaluation& temperature, const Evaluation& density)
289 { return H2O::gasPressure(temperature, density); }
290
294 template <class Evaluation>
295 static Evaluation liquidPressure(const Evaluation& temperature, const Evaluation& density)
296 {
297 // We use the newton method for this. For the initial value we
298 // assume the pressure to be 10% higher than the vapor
299 // pressure
300 Evaluation pressure = 1.1*vaporPressure(temperature);
301 Scalar eps = scalarValue(pressure)*1e-7;
302
303 Evaluation deltaP = pressure*2;
304 for (int i = 0;
305 i < 5
306 && std::abs(scalarValue(pressure)*1e-9) < std::abs(scalarValue(deltaP));
307 ++i)
308 {
309 const Evaluation f = liquidDensity(temperature, pressure) - density;
310
311 Evaluation df_dp = liquidDensity(temperature, pressure + eps);
312 df_dp -= liquidDensity(temperature, pressure - eps);
313 df_dp /= 2*eps;
314
315 deltaP = - f/df_dp;
316
317 pressure += deltaP;
318 }
319
320 return pressure;
321 }
322
326 template <class Evaluation>
327 static Evaluation gasViscosity(const Evaluation& temperature, const Evaluation& pressure)
328 { return H2O::gasViscosity(temperature, pressure); }
329
338 template <class Evaluation>
339 static Evaluation liquidViscosity(const Evaluation& temperature, const Evaluation& /*pressure*/)
340 {
341 Evaluation T_C = temperature - 273.15;
342 if(temperature <= 275.) // regularization
343 T_C = 275.0;
344
345 Evaluation A = (0.42*std::pow((std::pow(salinity, 0.8)-0.17), 2) + 0.045)*pow(T_C, 0.8);
346 Evaluation mu_brine = 0.1 + 0.333*salinity + (1.65+91.9*salinity*salinity*salinity)*exp(-A);
347
348 return mu_brine/1000.0; // convert to [Pa s] (todo: check if correct cP->Pa s is times 10...)
349 }
350};
351
355template <class Scalar, class H2O>
356Scalar Brine<Scalar, H2O>::salinity = 0.1; // also needs to be adapted in CO2 solubility table!
357
358} // namespace Opm
359
360#endif
A traits class which provides basic mathematical functions for arbitrary scalar floating point values...
A class for the brine fluid properties.
Definition: Brine.hpp:46
static Scalar molarMass()
The molar mass in of the component.
Definition: Brine.hpp:80
static Evaluation gasPressure(const Evaluation &temperature, const Evaluation &density)
The pressure of steam in at a given density and temperature.
Definition: Brine.hpp:288
static Scalar criticalVolume()
Returns the critical volume of water.
Definition: Brine.hpp:103
static Scalar tripleTemperature()
Returns the temperature at water's triple point.
Definition: Brine.hpp:115
static Scalar criticalPressure()
Returns the critical pressure of water.
Definition: Brine.hpp:97
static Evaluation gasInternalEnergy(const Evaluation &temperature, const Evaluation &pressure)
Specific internal energy of steam and water vapor .
Definition: Brine.hpp:227
static Evaluation vaporPressure(const Evaluation &T)
The vapor pressure in of pure water at a given temperature.
Definition: Brine.hpp:128
static Evaluation liquidEnthalpy(const Evaluation &temperature, const Evaluation &pressure)
Specific enthalpy of the pure component in liquid.
Definition: Brine.hpp:148
static const char * name()
A human readable name for the component.
Definition: Brine.hpp:54
static bool gasIsCompressible()
Returns true iff the gas phase is assumed to be compressible.
Definition: Brine.hpp:66
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of the liquid component at a given pressure in and temperature in .
Definition: Brine.hpp:262
static Evaluation gasViscosity(const Evaluation &temperature, const Evaluation &pressure)
The dynamic viscosity of steam.
Definition: Brine.hpp:327
static Evaluation gasDensity(const Evaluation &temperature, const Evaluation &pressure)
The density of steam in at a given pressure and temperature.
Definition: Brine.hpp:251
static Scalar criticalTemperature()
Returns the critical temperature of water.
Definition: Brine.hpp:91
static Scalar triplePressure()
Returns the pressure at water's triple point.
Definition: Brine.hpp:121
static Evaluation gasHeatCapacity(const Evaluation &temperature, const Evaluation &pressure)
Specific isobaric heat capacity of water steam .
Definition: Brine.hpp:219
static Evaluation liquidViscosity(const Evaluation &temperature, const Evaluation &)
The dynamic viscosity of pure water.
Definition: Brine.hpp:339
static Evaluation liquidInternalEnergy(const Evaluation &temperature, const Evaluation &pressure)
Specific internal energy of liquid water .
Definition: Brine.hpp:239
static Evaluation liquidPressure(const Evaluation &temperature, const Evaluation &density)
The pressure of liquid water in at a given density and temperature.
Definition: Brine.hpp:295
static bool liquidIsCompressible()
Returns true iff the liquid phase is assumed to be compressible.
Definition: Brine.hpp:72
static bool gasIsIdeal()
Returns true iff the gas phase is assumed to be ideal.
Definition: Brine.hpp:60
static Evaluation gasEnthalpy(const Evaluation &temperature, const Evaluation &pressure)
Specific enthalpy of the pure component in gas.
Definition: Brine.hpp:135
static Scalar salinity
The mass fraction of salt assumed to be in the brine.
Definition: Brine.hpp:49
static Scalar acentricFactor()
Definition: Brine.hpp:109
static Evaluation liquidHeatCapacity(const Evaluation &temperature, const Evaluation &pressure)
Specific isobaric heat capacity of liquid water .
Definition: Brine.hpp:208
Abstract base class of a pure chemical species.
Definition: Component.hpp:42
Scalar Scalar
Definition: Component.hpp:44
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of pure water in at a given pressure and temperature.
Definition: H2O.hpp:698
static const Scalar criticalTemperature()
Returns the critical temperature of water.
Definition: H2O.hpp:92
static Evaluation gasDensity(const Evaluation &temperature, const Evaluation &pressure)
The density of steam in at a given pressure and temperature.
Definition: H2O.hpp:572
static bool gasIsCompressible()
Returns true iff the gas phase is assumed to be compressible.
Definition: H2O.hpp:550
static Evaluation gasPressure(const Evaluation &temperature, Scalar density)
The pressure of steam in at a given density and temperature.
Definition: H2O.hpp:654
static Evaluation vaporPressure(Evaluation temperature)
The vapor pressure in of pure water at a given temperature.
Definition: H2O.hpp:138
static Evaluation gasViscosity(const Evaluation &temperature, const Evaluation &pressure)
The dynamic viscosity of steam.
Definition: H2O.hpp:802
static Evaluation gasHeatCapacity(const Evaluation &temperature, const Evaluation &pressure)
Specific isobaric heat capacity of water steam .
Definition: H2O.hpp:280
static Evaluation liquidEnthalpy(const Evaluation &temperature, const Evaluation &pressure)
Specific enthalpy of liquid water .
Definition: H2O.hpp:236
static const Scalar acentricFactor()
The acentric factor of water.
Definition: H2O.hpp:86
static bool gasIsIdeal()
Returns true iff the gas phase is assumed to be ideal.
Definition: H2O.hpp:638
static const Scalar criticalPressure()
Returns the critical pressure of water.
Definition: H2O.hpp:98
static const Scalar molarMass()
The molar mass in of water.
Definition: H2O.hpp:80
static bool liquidIsCompressible()
Returns true iff the liquid phase is assumed to be compressible.
Definition: H2O.hpp:556
static Evaluation gasEnthalpy(const Evaluation &temperature, const Evaluation &pressure)
Specific enthalpy of water steam .
Definition: H2O.hpp:183
static const Scalar tripleTemperature()
Returns the temperature at water's triple point.
Definition: H2O.hpp:116
static const Scalar triplePressure()
Returns the pressure at water's triple point.
Definition: H2O.hpp:122
static const Scalar criticalVolume()
Returns the critical volume of water.
Definition: H2O.hpp:104
Definition: Air_Mesitylene.hpp:34
Evaluation exp(const Evaluation &value)
Definition: MathToolbox.hpp:403
auto scalarValue(const Evaluation &val) -> decltype(MathToolbox< Evaluation >::scalarValue(val))
Definition: MathToolbox.hpp:335
Evaluation abs(const Evaluation &value)
Definition: MathToolbox.hpp:350
ReturnEval_< Evaluation1, Evaluation2 >::type pow(const Evaluation1 &base, const Evaluation2 &exp)
Definition: MathToolbox.hpp:416