Brine_CO2.hpp
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef OPM_BINARY_COEFF_BRINE_CO2_HPP
29#define OPM_BINARY_COEFF_BRINE_CO2_HPP
30
33
34namespace Opm {
35namespace BinaryCoeff {
36
41template<class Scalar, class H2O, class CO2, bool verbose = true>
42class Brine_CO2 {
43 typedef ::Opm::IdealGas<Scalar> IdealGas;
44 static const int liquidPhaseIdx = 0; // index of the liquid phase
45 static const int gasPhaseIdx = 1; // index of the gas phase
46
47public:
55 template <class Evaluation>
56 static Evaluation gasDiffCoeff(const Evaluation& temperature, const Evaluation& pressure, bool extrapolate = false)
57 {
58 //Diffusion coefficient of water in the CO2 phase
59 Scalar k = 1.3806504e-23; // Boltzmann constant
60 Scalar c = 4; // slip parameter, can vary between 4 (slip condition) and 6 (stick condition)
61 Scalar R_h = 1.72e-10; // hydrodynamic radius of the solute
62 const Evaluation& mu = CO2::gasViscosity(temperature, pressure, extrapolate); // CO2 viscosity
63 return k / (c * M_PI * R_h) * (temperature / mu);
64 }
65
72 template <class Evaluation>
73 static Evaluation liquidDiffCoeff(const Evaluation& /*temperature*/, const Evaluation& /*pressure*/)
74 {
75 //Diffusion coefficient of CO2 in the brine phase
76 return 2e-9;
77 }
78
96 template <class Evaluation>
97 static void calculateMoleFractions(const Evaluation& temperature,
98 const Evaluation& pg,
99 Scalar salinity,
100 const int knownPhaseIdx,
101 Evaluation& xlCO2,
102 Evaluation& ygH2O,
103 bool extrapolate = false)
104 {
105 Evaluation A = computeA_(temperature, pg, extrapolate);
106
107 /* salinity: conversion from mass fraction to mol fraction */
108 Scalar x_NaCl = salinityToMolFrac_(salinity);
109
110 // if both phases are present the mole fractions in each phase can be calculate
111 // with the mutual solubility function
112 if (knownPhaseIdx < 0) {
113 Scalar molalityNaCl = moleFracToMolality_(x_NaCl); // molality of NaCl //CHANGED
114 Evaluation m0_CO2 = molalityCO2inPureWater_(temperature, pg, extrapolate); // molality of CO2 in pure water
115 Evaluation gammaStar = activityCoefficient_(temperature, pg, molalityNaCl);// activity coefficient of CO2 in brine
116 Evaluation m_CO2 = m0_CO2 / gammaStar; // molality of CO2 in brine
117 xlCO2 = m_CO2 / (molalityNaCl + 55.508 + m_CO2); // mole fraction of CO2 in brine
118 ygH2O = A * (1 - xlCO2 - x_NaCl); // mole fraction of water in the gas phase
119 }
120
121 // if only liquid phase is present the mole fraction of CO2 in brine is given and
122 // and the virtual equilibrium mole fraction of water in the non-existing gas phase can be estimated
123 // with the mutual solubility function
124 if (knownPhaseIdx == liquidPhaseIdx)
125 ygH2O = A * (1 - xlCO2 - x_NaCl);
126
127 // if only gas phase is present the mole fraction of water in the gas phase is given and
128 // and the virtual equilibrium mole fraction of CO2 in the non-existing liquid phase can be estimated
129 // with the mutual solubility function
130 if (knownPhaseIdx == gasPhaseIdx)
131 //y_H2o = fluidstate.
132 xlCO2 = 1 - x_NaCl - ygH2O / A;
133 }
134
138 template <class Evaluation>
139 static Evaluation henry(const Evaluation& temperature, bool extrapolate = false)
140 { return fugacityCoefficientCO2(temperature, /*pressure=*/1e5, extrapolate)*1e5; }
141
150 template <class Evaluation>
151 static Evaluation fugacityCoefficientCO2(const Evaluation& temperature, const Evaluation& pg, bool extrapolate = false)
152 {
153 Valgrind::CheckDefined(temperature);
155
156 Evaluation V = 1 / (CO2::gasDensity(temperature, pg, extrapolate) / CO2::molarMass()) * 1.e6; // molar volume in cm^3/mol
157 Evaluation pg_bar = pg / 1.e5; // gas phase pressure in bar
158 Evaluation a_CO2 = (7.54e7 - 4.13e4 * temperature); // mixture parameter of Redlich-Kwong equation
159 Scalar b_CO2 = 27.8; // mixture parameter of Redlich-Kwong equation
160 Scalar R = IdealGas::R * 10.; // ideal gas constant with unit bar cm^3 /(K mol)
161 Evaluation lnPhiCO2;
162
163 lnPhiCO2 = log(V / (V - b_CO2));
164 lnPhiCO2 += b_CO2 / (V - b_CO2);
165 lnPhiCO2 -= 2 * a_CO2 / (R * pow(temperature, 1.5) * b_CO2) * log((V + b_CO2) / V);
166 lnPhiCO2 +=
167 a_CO2 * b_CO2
168 / (R
169 * pow(temperature, 1.5)
170 * b_CO2
171 * b_CO2)
172 * (log((V + b_CO2) / V)
173 - b_CO2 / (V + b_CO2));
174 lnPhiCO2 -= log(pg_bar * V / (R * temperature));
175
176 return exp(lnPhiCO2); // fugacity coefficient of CO2
177 }
178
187 template <class Evaluation>
188 static Evaluation fugacityCoefficientH2O(const Evaluation& temperature, const Evaluation& pg, bool extrapolate = false)
189 {
190 const Evaluation& V = 1 / (CO2::gasDensity(temperature, pg, extrapolate) / CO2::molarMass()) * 1.e6; // molar volume in cm^3/mol
191 const Evaluation& pg_bar = pg / 1.e5; // gas phase pressure in bar
192 const Evaluation& a_CO2 = (7.54e7 - 4.13e4 * temperature);// mixture parameter of Redlich-Kwong equation
193 Scalar a_CO2_H2O = 7.89e7;// mixture parameter of Redlich-Kwong equation
194 Scalar b_CO2 = 27.8;// mixture parameter of Redlich-Kwong equation
195 Scalar b_H2O = 18.18;// mixture parameter of Redlich-Kwong equation
196 Scalar R = IdealGas::R * 10.; // ideal gas constant with unit bar cm^3 /(K mol)
197 Evaluation lnPhiH2O;
198
199 lnPhiH2O =
200 log(V/(V - b_CO2))
201 + b_H2O/(V - b_CO2) - 2*a_CO2_H2O
202 / (R*pow(temperature, 1.5)*b_CO2)*log((V + b_CO2)/V)
203 + a_CO2*b_H2O/(R*pow(temperature, 1.5)*b_CO2*b_CO2)
204 *(log((V + b_CO2)/V) - b_CO2/(V + b_CO2))
205 - log(pg_bar*V/(R*temperature));
206 return exp(lnPhiH2O); // fugacity coefficient of H2O
207 }
208
209private:
215 static Scalar salinityToMolFrac_(Scalar salinity) {
216
217 const Scalar Mw = H2O::molarMass(); /* molecular weight of water [kg/mol] */
218 const Scalar Ms = 58.8e-3; /* molecular weight of NaCl [kg/mol] */
219
220 const Scalar X_NaCl = salinity;
221 /* salinity: conversion from mass fraction to mol fraction */
222 const Scalar x_NaCl = -Mw * X_NaCl / ((Ms - Mw) * X_NaCl - Ms);
223 return x_NaCl;
224 }
225
231 static Scalar moleFracToMolality_(Scalar x_NaCl)
232 {
233 // conversion from mol fraction to molality (dissolved CO2 neglected)
234 return 55.508 * x_NaCl / (1 - x_NaCl);
235 }
236
244 template <class Evaluation>
245 static Evaluation molalityCO2inPureWater_(const Evaluation& temperature, const Evaluation& pg, bool extrapolate = false)
246 {
247 const Evaluation& A = computeA_(temperature, pg, extrapolate); // according to Spycher, Pruess and Ennis-King (2003)
248 const Evaluation& B = computeB_(temperature, pg, extrapolate); // according to Spycher, Pruess and Ennis-King (2003)
249 const Evaluation& yH2OinGas = (1 - B) / (1. / A - B); // equilibrium mol fraction of H2O in the gas phase
250 const Evaluation& xCO2inWater = B * (1 - yH2OinGas); // equilibrium mol fraction of CO2 in the water phase
251 return (xCO2inWater * 55.508) / (1 - xCO2inWater); // CO2 molality
252 }
253
263 template <class Evaluation>
264 static Evaluation activityCoefficient_(const Evaluation& temperature,
265 const Evaluation& pg,
266 Scalar molalityNaCl)
267 {
268 const Evaluation& lambda = computeLambda_(temperature, pg); // lambda_{CO2-Na+}
269 const Evaluation& xi = computeXi_(temperature, pg); // Xi_{CO2-Na+-Cl-}
270 const Evaluation& lnGammaStar =
271 2*molalityNaCl*lambda + xi*molalityNaCl*molalityNaCl;
272 return exp(lnGammaStar);
273 }
274
283 template <class Evaluation>
284 static Evaluation computeA_(const Evaluation& temperature, const Evaluation& pg, bool extrapolate = false)
285 {
286 const Evaluation& deltaP = pg / 1e5 - 1; // pressure range [bar] from p0 = 1bar to pg[bar]
287 Scalar v_av_H2O = 18.1; // average partial molar volume of H2O [cm^3/mol]
288 Scalar R = IdealGas::R * 10;
289 const Evaluation& k0_H2O = equilibriumConstantH2O_(temperature); // equilibrium constant for H2O at 1 bar
290 const Evaluation& phi_H2O = fugacityCoefficientH2O(temperature, pg, extrapolate); // fugacity coefficient of H2O for the water-CO2 system
291 const Evaluation& pg_bar = pg / 1.e5;
292 return k0_H2O/(phi_H2O*pg_bar)*exp(deltaP*v_av_H2O/(R*temperature));
293 }
294
303 template <class Evaluation>
304 static Evaluation computeB_(const Evaluation& temperature, const Evaluation& pg, bool extrapolate = false)
305 {
306 const Evaluation& deltaP = pg / 1e5 - 1; // pressure range [bar] from p0 = 1bar to pg[bar]
307 const Scalar v_av_CO2 = 32.6; // average partial molar volume of CO2 [cm^3/mol]
308 const Scalar R = IdealGas::R * 10;
309 const Evaluation& k0_CO2 = equilibriumConstantCO2_(temperature); // equilibrium constant for CO2 at 1 bar
310 const Evaluation& phi_CO2 = fugacityCoefficientCO2(temperature, pg, extrapolate); // fugacity coefficient of CO2 for the water-CO2 system
311 const Evaluation& pg_bar = pg / 1.e5;
312 return phi_CO2*pg_bar/(55.508*k0_CO2)*exp(-(deltaP*v_av_CO2)/(R*temperature));
313 }
314
322 template <class Evaluation>
323 static Evaluation computeLambda_(const Evaluation& temperature, const Evaluation& pg)
324 {
325 static const Scalar c[6] =
326 { -0.411370585, 6.07632013E-4, 97.5347708, -0.0237622469, 0.0170656236, 1.41335834E-5 };
327
328 Evaluation pg_bar = pg / 1.0E5; /* conversion from Pa to bar */
329 return
330 c[0]
331 + c[1]*temperature
332 + c[2]/temperature
333 + c[3]*pg_bar/temperature
334 + c[4]*pg_bar/(630.0 - temperature)
335 + c[5]*temperature*log(pg_bar);
336 }
337
345 template <class Evaluation>
346 static Evaluation computeXi_(const Evaluation& temperature, const Evaluation& pg)
347 {
348 static const Scalar c[4] =
349 { 3.36389723E-4, -1.98298980E-5, 2.12220830E-3, -5.24873303E-3 };
350
351 Evaluation pg_bar = pg / 1.0E5; /* conversion from Pa to bar */
352 return c[0] + c[1]*temperature + c[2]*pg_bar/temperature + c[3]*pg_bar/(630.0 - temperature);
353 }
354
361 template <class Evaluation>
362 static Evaluation equilibriumConstantCO2_(const Evaluation& temperature)
363 {
364 Evaluation temperatureCelcius = temperature - 273.15;
365 static const Scalar c[3] = { 1.189, 1.304e-2, -5.446e-5 };
366 Evaluation logk0_CO2 = c[0] + temperatureCelcius*(c[1] + temperatureCelcius*c[2]);
367 Evaluation k0_CO2 = pow(10.0, logk0_CO2);
368 return k0_CO2;
369 }
370
377 template <class Evaluation>
378 static Evaluation equilibriumConstantH2O_(const Evaluation& temperature)
379 {
380 Evaluation temperatureCelcius = temperature - 273.15;
381 static const Scalar c[4] = { -2.209, 3.097e-2, -1.098e-4, 2.048e-7 };
382 Evaluation logk0_H2O =
383 c[0] + temperatureCelcius*(c[1] + temperatureCelcius*(c[2] + temperatureCelcius*c[3]));
384 return pow(10.0, logk0_H2O);
385 }
386
387};
388
389} // namespace BinaryCoeff
390} // namespace Opm
391
392#endif
Some templates to wrap the valgrind client request macros.
Binary coefficients for brine and CO2.
Definition: Brine_CO2.hpp:42
static Evaluation fugacityCoefficientH2O(const Evaluation &temperature, const Evaluation &pg, bool extrapolate=false)
Returns the fugacity coefficient of the H2O component in a water-CO2 mixture.
Definition: Brine_CO2.hpp:188
static void calculateMoleFractions(const Evaluation &temperature, const Evaluation &pg, Scalar salinity, const int knownPhaseIdx, Evaluation &xlCO2, Evaluation &ygH2O, bool extrapolate=false)
Returns the mol (!) fraction of CO2 in the liquid phase and the mol_ (!) fraction of H2O in the gas p...
Definition: Brine_CO2.hpp:97
static Evaluation gasDiffCoeff(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
Binary diffusion coefficent [m^2/s] of water in the CO2 phase.
Definition: Brine_CO2.hpp:56
static Evaluation fugacityCoefficientCO2(const Evaluation &temperature, const Evaluation &pg, bool extrapolate=false)
Returns the fugacity coefficient of the CO2 component in a water-CO2 mixture.
Definition: Brine_CO2.hpp:151
static Evaluation liquidDiffCoeff(const Evaluation &, const Evaluation &)
Binary diffusion coefficent [m^2/s] of CO2 in the brine phase.
Definition: Brine_CO2.hpp:73
static Evaluation henry(const Evaluation &temperature, bool extrapolate=false)
Henry coefficent for CO2 in brine.
Definition: Brine_CO2.hpp:139
static Scalar molarMass()
The mass in [kg] of one mole of CO2.
Definition: CO2.hpp:66
static Evaluation gasViscosity(Evaluation temperature, const Evaluation &pressure, bool extrapolate=false)
The dynamic viscosity [Pa s] of CO2.
Definition: CO2.hpp:203
static Evaluation gasDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate=false)
The density of CO2 at a given pressure and temperature [kg/m^3].
Definition: CO2.hpp:189
static const Scalar molarMass()
The molar mass in of water.
Definition: H2O.hpp:80
Relations valid for an ideal gas.
Definition: IdealGas.hpp:38
static const Scalar R
The ideal gas constant .
Definition: IdealGas.hpp:41
bool CheckDefined(const T &value)
Make valgrind complain if any of the memory occupied by an object is undefined.
Definition: Valgrind.hpp:74
Definition: Air_Mesitylene.hpp:34
Evaluation exp(const Evaluation &value)
Definition: MathToolbox.hpp:403
Evaluation log(const Evaluation &value)
Definition: MathToolbox.hpp:407
ReturnEval_< Evaluation1, Evaluation2 >::type pow(const Evaluation1 &base, const Evaluation2 &exp)
Definition: MathToolbox.hpp:416