SimpleHuDuanH2O.hpp
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
27#ifndef OPM_SIMPLE_HU_DUAN_H2O_HPP
28#define OPM_SIMPLE_HU_DUAN_H2O_HPP
29
30#include "Component.hpp"
31#include "iapws/Common.hpp"
32
33
35
38
39#if HAVE_OPM_COMMON
40#include <opm/common/OpmLog/OpmLog.hpp>
41#else
42#include <iostream>
43#endif
44
45#include <cmath>
46#include <sstream>
47
48namespace Opm {
49
68template <class Scalar>
69class SimpleHuDuanH2O : public Component<Scalar, SimpleHuDuanH2O<Scalar>>
70{
73
74 static constexpr Scalar R = Constants<Scalar>::R / 18e-3; // specific gas constant of water
75
76public:
80 static const char* name()
81 { return "H2O"; }
82
86 static bool gasIsCompressible()
87 { return true; }
88
93 { return false; }
94
98 static bool gasIsIdeal()
99 { return true; }
100
105 { return 18e-3; }
106
111 { return 647.096; /* [K] */ }
112
117 { return 22.064e6; /* [N/m^2] */ }
118
123 { return 273.16; /* [K] */ }
124
129 { return 611.657; /* [N/m^2] */ }
130
143 template <class Evaluation>
144 static Evaluation vaporPressure(const Evaluation& T)
145 {
146 if (T > criticalTemperature())
147 return criticalPressure();
148 if (T < tripleTemperature())
149 return 0; // water is solid: We don't take sublimation into account
150
151 static constexpr Scalar n[10] = {
152 0.11670521452767e4, -0.72421316703206e6, -0.17073846940092e2,
153 0.12020824702470e5, -0.32325550322333e7, 0.14915108613530e2,
154 -0.48232657361591e4, 0.40511340542057e6, -0.23855557567849,
155 0.65017534844798e3
156 };
157
158 Evaluation sigma = T + n[8]/(T - n[9]);
159
160 Evaluation A = (sigma + n[0])*sigma + n[1];
161 Evaluation B = (n[2]*sigma + n[3])*sigma + n[4];
162 Evaluation C = (n[5]*sigma + n[6])*sigma + n[7];
163
164 Evaluation tmp = 2.0*C/(sqrt(B*B - 4.0*A*C) - B);
165 tmp *= tmp;
166 tmp *= tmp;
167
168 return 1e6*tmp;
169 }
170
177 template <class Evaluation>
178 static Evaluation gasEnthalpy(const Evaluation& temperature,
179 const Evaluation& /*pressure*/)
180 { return 1.976e3*temperature + 40.65e3/molarMass(); }
181
182
186 template <class Evaluation>
187 static Evaluation gasHeatCapacity(const Evaluation&,
188 const Evaluation&)
189 { return 1.976e3; }
190
197 template <class Evaluation>
198 static Evaluation liquidEnthalpy(const Evaluation& temperature,
199 const Evaluation& /*pressure*/)
200 { return 4180*temperature; }
201
205 template <class Evaluation>
206 static Evaluation liquidHeatCapacity(const Evaluation&,
207 const Evaluation&)
208 { return 4.184e3; }
209
223 template <class Evaluation>
224 static Evaluation gasInternalEnergy(const Evaluation& temperature,
225 const Evaluation& pressure)
226 {
227 return
228 gasEnthalpy(temperature, pressure) -
229 1/molarMass()* // conversion from [J/(mol K)] to [J/(kg K)]
230 IdealGas::R*temperature; // = pressure *spec. volume for an ideal gas
231 }
232
239 template <class Evaluation>
240 static Evaluation liquidInternalEnergy(const Evaluation& temperature,
241 const Evaluation& pressure)
242 {
243 return
244 liquidEnthalpy(temperature, pressure) -
245 pressure/liquidDensity(temperature, pressure);
246 }
247
254 template <class Evaluation>
255 static Evaluation liquidThermalConductivity(const Evaluation& /*temperature*/,
256 const Evaluation& /*pressure*/)
257 {
258 return 0.578078; // conductivity of liquid water [W / (m K ) ] IAPWS evaluated at p=.1 MPa, T=8°C
259 }
260
267 template <class Evaluation>
268 static Evaluation gasThermalConductivity(const Evaluation& /*temperature*/,
269 const Evaluation& /*pressure*/)
270 {
271 return 0.028224; // conductivity of steam [W / (m K ) ] IAPWS evaluated at p=.1 MPa, T=8°C
272 }
273
280 template <class Evaluation>
281 static Evaluation gasDensity(const Evaluation& temperature, const Evaluation& pressure)
282 {
283 // Assume an ideal gas
284 return molarMass()*IdealGas::molarDensity(temperature, pressure);
285 }
286
293 template <class Evaluation>
294 static Evaluation gasPressure(const Evaluation& temperature, const Evaluation& density)
295 {
296 // Assume an ideal gas
297 return IdealGas::pressure(temperature, density/molarMass());
298 }
299
308 template <class Evaluation>
309 static Evaluation liquidDensity(const Evaluation& temperature, const Evaluation& pressure,
310 bool extrapolate)
311 {
312 return liquidDensity_(temperature, pressure, extrapolate);
313 }
314
321 template <class Evaluation>
322 static Evaluation liquidPressure(const Evaluation& /*temperature*/, const Evaluation& /*density*/)
323 {
324 throw std::logic_error("The liquid pressure is undefined for incompressible fluids");
325 }
326
334 template <class Evaluation>
335 static Evaluation gasViscosity(const Evaluation& /*temperature*/,
336 const Evaluation& /*pressure*/)
337 {
338 return 1e-05;
339 }
340
349 template <class Evaluation>
350 static Evaluation liquidViscosity(const Evaluation& temperature, const Evaluation& pressure,
351 bool extrapolate)
352 {
353 if (temperature > 570) {
354 std::ostringstream oss;
355 oss << "Viscosity of water based on Hu et al is too different from IAPWS for T above 570K and "
356 << "(T = " << temperature << ")";
357 if(extrapolate)
358 {
359#if HAVE_OPM_COMMON
360 OpmLog::warning(oss.str());
361#else
362 std::cerr << "warning: "<< oss.str() <<std::endl;
363#endif
364 }
365 else
366 throw NumericalIssue(oss.str());
367 }
368
369 const Evaluation rho = liquidDensity(temperature, pressure, extrapolate);
370 return Common::viscosity(temperature, rho);
371 }
372
373private:
374
383 template <class Evaluation>
384 static Evaluation liquidDensity_(const Evaluation& T, const Evaluation& pressure, bool extrapolate) {
385 // Hu, Duan, Zhu and Chou: PVTx properties of the CO2-H2O and CO2-H2O-NaCl
386 // systems below 647 K: Assessment of experimental data and
387 // thermodynamics models, Chemical Geology, 2007.
388 if (T > 647 || pressure > 100e6) {
389 std::ostringstream oss;
390 oss << "Density of water is only implemented for temperatures below 647K and "
391 << "pressures below 100MPa. (T = " << T << ", p=" << pressure;
392 if(extrapolate)
393 {
394#if HAVE_OPM_COMMON
395 OpmLog::warning(oss.str());
396#else
397 std::cerr << "warning: "<< oss.str() <<std::endl;
398#endif
399 }
400 else
401 throw NumericalIssue(oss.str());
402 }
403
404 Evaluation p = pressure / 1e6; // to MPa
405 Scalar Mw = molarMass() * 1e3; //kg/kmol
406
407 static constexpr Scalar k0[5] = { 3.27225e-07, -4.20950e-04, 2.32594e-01, -4.16920e+01, 5.71292e+03 };
408 static constexpr Scalar k1[5] = { -2.32306e-10, 2.91138e-07, -1.49662e-04, 3.59860e-02, -3.55071 };
409 static constexpr Scalar k2[3] = { 2.57241e-14, -1.24336e-11, 5.42707e-07 };
410 static constexpr Scalar k3[3] = { -4.42028e-18, 2.10007e-15, -8.11491e-11 };
411 Evaluation k0_eval = 1e-3 * (((k0[0]*T + k0[1])*T + k0[2])*T + k0[3] + k0[4]/T);
412 Evaluation k1_eval = 1e-2 * (((k1[0]*T + k1[1])*T + k1[2])*T + k1[3] + k1[4]/T);
413 Evaluation k2_eval = 1e-1 * ((k2[0]*T + k2[1])*T*T + k2[2]);
414 Evaluation k3_eval = (k3[0]*T + k3[1])*T*T + k3[2];
415
416 // molar volum (m³/kmol):
417 Evaluation vw = ((k3_eval*p + k2_eval)*p + k1_eval)*p + k0_eval;
418
419 // density kg/m3
420 return Mw / vw;
421
422 }
423
424};
425
426} // namespace Opm
427
428#endif
Provides the opm-material specific exception classes.
A traits class which provides basic mathematical functions for arbitrary scalar floating point values...
Abstract base class of a pure chemical species.
Definition: Component.hpp:42
Scalar Scalar
Definition: Component.hpp:44
A central place for various physical constants occuring in some equations.
Definition: Constants.hpp:41
Implements relations which are common for all regions of the IAPWS '97 formulation.
Definition: Common.hpp:55
static Evaluation viscosity(const Evaluation &temperature, const Evaluation &rho)
The dynamic viscosity of pure water.
Definition: Common.hpp:102
Relations valid for an ideal gas.
Definition: IdealGas.hpp:38
static const Scalar R
The ideal gas constant .
Definition: IdealGas.hpp:41
static Evaluation pressure(const Evaluation &temperature, const Evaluation &rhoMolar)
The pressure of the gas in , depending on the molar density and temperature.
Definition: IdealGas.hpp:58
static Evaluation molarDensity(const Evaluation &temperature, const Evaluation &pressure)
The molar density of the gas , depending on pressure and temperature.
Definition: IdealGas.hpp:67
Definition: Exceptions.hpp:46
A simple version of pure water with density from Hu et al.
Definition: SimpleHuDuanH2O.hpp:70
static Evaluation gasThermalConductivity(const Evaluation &, const Evaluation &)
Specific heat conductivity of steam .
Definition: SimpleHuDuanH2O.hpp:268
static Scalar tripleTemperature()
Returns the temperature at water's triple point.
Definition: SimpleHuDuanH2O.hpp:122
static Evaluation gasDensity(const Evaluation &temperature, const Evaluation &pressure)
The density of steam at a given pressure and temperature.
Definition: SimpleHuDuanH2O.hpp:281
static Evaluation gasPressure(const Evaluation &temperature, const Evaluation &density)
The pressure of steam in at a given density and temperature.
Definition: SimpleHuDuanH2O.hpp:294
static Evaluation vaporPressure(const Evaluation &T)
The vapor pressure in of pure water at a given temperature.
Definition: SimpleHuDuanH2O.hpp:144
static Evaluation liquidHeatCapacity(const Evaluation &, const Evaluation &)
Specific isobaric heat capacity of the component [J/kg] as a liquid.
Definition: SimpleHuDuanH2O.hpp:206
static Evaluation liquidEnthalpy(const Evaluation &temperature, const Evaluation &)
Specific enthalpy of liquid water .
Definition: SimpleHuDuanH2O.hpp:198
static Evaluation liquidViscosity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate)
The dynamic viscosity of pure water.
Definition: SimpleHuDuanH2O.hpp:350
static Scalar criticalPressure()
Returns the critical pressure of water.
Definition: SimpleHuDuanH2O.hpp:116
static Evaluation liquidDensity(const Evaluation &temperature, const Evaluation &pressure, bool extrapolate)
The density of pure water at a given pressure and temperature .
Definition: SimpleHuDuanH2O.hpp:309
static Evaluation liquidPressure(const Evaluation &, const Evaluation &)
The pressure of water in at a given density and temperature.
Definition: SimpleHuDuanH2O.hpp:322
static bool gasIsIdeal()
Returns true iff the gas phase is assumed to be ideal.
Definition: SimpleHuDuanH2O.hpp:98
static Evaluation liquidThermalConductivity(const Evaluation &, const Evaluation &)
Specific heat conductivity of liquid water .
Definition: SimpleHuDuanH2O.hpp:255
static bool gasIsCompressible()
Returns true iff the gas phase is assumed to be compressible.
Definition: SimpleHuDuanH2O.hpp:86
static Scalar criticalTemperature()
Returns the critical temperature of water.
Definition: SimpleHuDuanH2O.hpp:110
static bool liquidIsCompressible()
Returns true iff the liquid phase is assumed to be compressible.
Definition: SimpleHuDuanH2O.hpp:92
static Evaluation liquidInternalEnergy(const Evaluation &temperature, const Evaluation &pressure)
Specific internal energy of liquid water .
Definition: SimpleHuDuanH2O.hpp:240
static Scalar molarMass()
The molar mass in of water.
Definition: SimpleHuDuanH2O.hpp:104
static Evaluation gasViscosity(const Evaluation &, const Evaluation &)
The dynamic viscosity of steam.
Definition: SimpleHuDuanH2O.hpp:335
static Evaluation gasEnthalpy(const Evaluation &temperature, const Evaluation &)
Specific enthalpy of water steam .
Definition: SimpleHuDuanH2O.hpp:178
static Evaluation gasInternalEnergy(const Evaluation &temperature, const Evaluation &pressure)
Specific internal energy of steam .
Definition: SimpleHuDuanH2O.hpp:224
static Evaluation gasHeatCapacity(const Evaluation &, const Evaluation &)
Specific isobaric heat capacity of the component [J/kg] as a gas.
Definition: SimpleHuDuanH2O.hpp:187
static const char * name()
A human readable name for the water.
Definition: SimpleHuDuanH2O.hpp:80
static Scalar triplePressure()
Returns the pressure at water's triple point.
Definition: SimpleHuDuanH2O.hpp:128
Definition: Air_Mesitylene.hpp:34
Evaluation sqrt(const Evaluation &value)
Definition: MathToolbox.hpp:399