
OPM hardware acceleration
TOM HOGERVORST

TONG DONG QIU

OPM Meeting Eichstätt - February 4 2020



Introduction
• What we do: Acceleration of the flow simulator
• Specifically: the linear solver

• BiCGSTAB solver with ILU0 preconditioner

• Research into different platforms
• FPGA

• GPU



FPGA Introduction
• What are FPGAs?
• Array of Configurable Logic Blocks

• Also contains memory and DSP blocks

• Fully programmable

• Why use FPGAs?
• Hardware tailored to application

• Exploit pipeline parallelism

• Lower power consumption



GPU Introduction
• What are GPUs?
• Many cores with shared control

• Small caches

• Exploit parallelism

• Why use GPUs?
• Massive SIMT parallelism

• Large bandwidth



The Solver Function
• Solver application consists of:
• Sparse Matrix operations (SPMV, apply_ILU0)

• Vector operations (dot, axpy)

• Main challenges:
• Random accesses in matrix operations

• Apply_ILU0 is sequential



The FPGA accelerator
• Problem: many parallel random accesses to same array



The FPGA accelerator
• Problem: many parallel random accesses to same array

• Partial Solution: Duplicate the vector
• Not scalable: larger vectors don't fit on board multiple times



The FPGA accelerator
• Problem: many parallel random accesses to same array

• Partial Solution: Duplicate the vector
• Not scalable: larger vectors don't fit on board multiple times

• Solution: Partition matrix and vector, duplicate vector partitions



The FPGA accelerator
• Parallelize apply_ILU0
• Sequential



The FPGA accelerator
• Parallelize apply_ILU0
• Sequential

• Level-scheduling

• Choose levels as partitions



The FPGA accelerator
• Overview of matrix operation in kernel



The FPGA accelerator
• Overview of matrix operation in kernel



The FPGA accelerator
• Overview of matrix operation in kernel



The FPGA accelerator
• Overview of matrix operation in kernel



The FPGA accelerator
• Overview of vector operation in kernel



The FPGA accelerator
• Overview of using the accelerator



FPGA Results
• FPGA board specifications:

Alveo U200 Alveo U280

LUTs 1,180,000 1,304,000

Registers 2,364,000 2,607,000

DSP Blocks 6,840 9,024

BRAM (on-chip) size // latency 9 MB // 2 cycles 9 MB // 2 cycles

URAM (on-chip) size // latency 34 MB // 4 cycles 34 MB // 4 cycles

DRAM (off-chip) 64 GB (4 channels) 32 GB (2 channels)

DRAM aggregated bandwidth // latency 77 GB/s // 130 cycles 38 GB/s // 130 cycles

HBM n/a 8 GB (32 channels)

HBM aggregated bandwidth // latency n/a 460 GB/s // 120 cycles



FPGA Results
• FPGA kernel specifications:

• CPU specifications:
• Xeon Silver 4114 CPU @ 2.20GHz

Alveo U200 Alveo U280

LUTs 9.00% 7.83%

Registers 7.32% 6.57%

DSP Blocks 4.21% 3.18%

BRAM used 33.48% 26.88%

URAM used 4.17% 4.17%

Frequency 186 MHz 280 MHz



FPGA Results
• Specifics of the current design:

FPGA kernel

Number of FPUs 24 (8 in Matrix unit, 16 in vector units)

Internal bandwidth 4.5 GB/s (2 ports)

Ports to DRAM 2 read

Achieved bandwidth to DRAM 13 GB/s

Ports to HBM 3 read, 3 write

Achieved bandwidth to HBM 22 GB/s reading, 42 GB/s writing



FPGA Results
• FPGA solver integrated with flow
• ISTLSolverEbos.hpp -> constructPreconditionerAndSolve()

• BdaBridge to allow multiple backends

• Ran flow with NORNE into file
• Results verified with ResInsight

DUNE FPGA kernel (U280)

Total time (s) 709.3 1409.1

Assembly time (s) 286.3 267.1

Linear solve time (s) 413.2 1088.6

Newton Iterations 1605 1616

Linear Iterations 24440 23721



FPGA Results
• Breakdown of FPGA kernel solver time
• All times are accumulated over one run of flow on the NORNE testcase

FPGA kernel time

Preprocessing (in software) 590.5 s

Memory setup 19.4 s

Transfer to/from FPGA DRAM+HBM 70.8 s

Kernel Solver 387.9 s



FPGA Conclusions
• Current work:
• Pre-processing software optimization

• Increasing HBM Bandwidth utilization

• Increasing the number of FPUs

• Interesting possibility: no partitioning
• Not scalable

• Reduces pre-processing time by 80 %

• Cumulative solver time estimations:

CPU solver Current Design
without partitioning

Design with double the amount of FPUs 
and HBM ports without partitioning

413.2 s 402.15 s 324.6 s



FPGA Conclusions
• Optimizing/Debugging is a slow process

• No specialized blocks for Double precision FP operations

• Memory latency to HBM high

• Frequency of FPGAs lower than CPU/GPU



GPU Implementation
• AMGX

• cusparse

• Zeroes on the diagonal

• WellContributions are included in matrix

• Pull Request 2209 on Github



GPU Implementation
• Nonzeroes of BCRSMatrix in contiguous memory

• Copy nonzeroes row-by-row to contiguous CPU memory
• Copying row-by-row adds about 10s

• No Pinned memory

Image source: https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/


GPU Implementation
• Device used: RTX 2080Ti:

• 4352 cores

• 616 GB/sec memory bandwidth

• 420 GFLOPS (double precision)



GPU Results

Dune cusparse, 
RTX2080Ti

Speedup Speedup (%)

Total time (s) 811 505 1.61 38

Assembly time (s) 303 308

Linear solve time (s) 447 137 3.26 69

Newton iterations 1597 1629

Linear iterations 24120 23593

constructPreconditionerAndSolve() 430 119 3.61 72

BiCGStab 383 99 3.87 74

Transfer time (s) 0 5.9

• Xeon E5-2620 v3, RTX2080Ti, 4 memory channels

• Verified output with ResInsight



GPU Results



GPU Results



GPU Results



GPU Results
• Running multiple independent Flows



GPU Results
MPI Processes 1 2 4 8 GPU

Total time (s) 823 499 292 234 493

Assembly time (s) 293 160 92 64 290

Linear solve time (s) 468 295 167 141 145



GPU Results
• ILU0 application is the bottleneck:
• 88% of BiCGStab time

• GPU memory bandwidth not utilized efficiently (13%)

• GPU issue efficiency is only 16%

• cusparse is not designed for running multiple processes, could
cause trashing



GPU Future Work
• Decouple wellcontributions for larger testcases

• OpenCL

• Manual ILU0 application
• To better utilize the GPU for ensembles



Thank you

Special thanks to Equinor for
making this research possible


