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The MATLAB Reservoir Simulation Toolbox (MRST)

The toolbox has the following functionality for rapid prototyping of solvers for flow
and transport:

I grid structure, grid factory routines, input/processing
of industry-standard formats, real-life and synthetic
example grids

I petrophysical parameters and incompressible fluid
models, conversion routines to/from SI and common
field units, very simplified geostatistical routines

I routines for setting and manipulating boundary
conditions, sources/sinks, and well models

I reservoir state (pressure, fluxes, saturations,
compositions, . . . )

I visualisation routines for cell and face data (scalars)

Download

http://www.sintef.no/MRST/

Version 2013a was released on the 19th of April, 2013, and can be downloaded under
the terms of the GNU General Public License (GPL)

2 / 9



How is MRST Designed?

The fundamental object in MRST is the grid:

I Data structure for geometry and topology

I Several grid factory routines

I Input of industry-standard (proprietary) format(s)

Physical quantities defined as dynamic objects (structures) in matlab

I Properties of medium (φ, K, net-to-gross, . . . )

I Reservoir fluids (ρ, µ, kr, PVT, . . . )

I Driving forces (wells, boundary conditions, sources)

I Reservoir state (pressure, fluxes, saturations, etc)

All MRST operations accept, manipulate and produce objects of these types.

Physical quantities are assumed to be in SI units ([K] = m2, [µ] = Pa · s etc).

3 / 9



How is MRST Designed?

MRST Core

I Routines for creating and manipulating grids and physical properties

I Basic flow and transport solvers (sequential splitting) for incompressible
and immiscible flow

Functionality is stable and not expected to change in future releases

Modules

Add-on software that extends, complements, and overrides existing MRST
features. Presently implements more advanced solvers and tools:

I automatic differentiation, inexpensive flow diagnostics

I adjoint methods, black-oil models, vertically integrated models, . . .

Some are stable. Some are constantly changing to support ongoing research.
New modules initiated by others are much welcome
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Application Examples
Modelling Faults in Consistent Schemes

Faults modelled as internal boundaries,
with internal jump conditions

u±f = Tf (π
∓
f − π

±
f )

Gives an extended hybrid system. In
addition, method to convert TPFA
multipliers to fault transmissibility Tf

Water cuts from producer #1
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Application Examples
Production optimisation

Specialised simulator: using different
grids for pressure and transport

Multiscale Pressure Solver

Transport on Flow-adapted Grid

Water-flood Optimisation

Reservoir geometry from a Norwegian Sea field
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Forward simulations:
44 927 cells, 20 time steps, < 5 sec in matlab
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Automatic Differentiation

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated
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Fully Implicit Solvers in MRST Based on AD

Black-oil Mass Balance Equations (w/dissolved gas)
∂t(φbwsw) + div(bwvw) = qw

∂t(φboso) + div(bovo) = qo

∂t(φ(bgsg +Rsboso)) + div(bgvg +Rsbovo) = qg

MRST Implementation; po, sw, sg and Rs as Primary Degrees of Freedom

F{w} = (pv/dt).*(bW.*sW - bW(p0).*sW0) + div(bWvW);

F{o} = (pv/dt).*(bO.*(1-sW-sG) - bO(p0,rs0).*(1-sW0-sG0)) + div(bOvO);

F{g} = (pv/dt).* ...

( bG.*sG + rs.*bO.*(1-sW-sG) - ...

bG(p0).*sG0 + rs0.*bO(p0,rs0).*(1-sW0-sG0) ) + ...

div(bGvG + rsbOvO)

Residuals in F{i}.val and the associate Jacobians in F{i}.jac. Technically achieved
by representing primary degrees of freedom and other quantities as types for which
arithmetic operations are overloaded to also compute derivatives through chain rule.
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The Approach Produces Promising Results
SPE 9 Benchmark Case

http://www.sintef.no/Projectweb/MRST/Modules/

Fully-implicit-solvers-based-on-automatic-differentiation/
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