
Recent Development in MRST

Bård Skaflestad

SINTEF ICT, Applied Mathematics

OPM Symposium, Bergen, 28–29 May 2013

The MATLAB Reservoir Simulation Toolbox (MRST)

The toolbox has the following functionality for rapid prototyping of solvers for flow
and transport:

I grid structure, grid factory routines, input/processing
of industry-standard formats, real-life and synthetic
example grids

I petrophysical parameters and incompressible fluid
models, conversion routines to/from SI and common
field units, very simplified geostatistical routines

I routines for setting and manipulating boundary
conditions, sources/sinks, and well models

I reservoir state (pressure, fluxes, saturations,
compositions, . . .)

I visualisation routines for cell and face data (scalars)

Download

http://www.sintef.no/MRST/

Version 2013a was released on the 19th of April, 2013, and can be downloaded under
the terms of the GNU General Public License (GPL)

2 / 9

How is MRST Designed?

The fundamental object in MRST is the grid:

I Data structure for geometry and topology

I Several grid factory routines

I Input of industry-standard (proprietary) format(s)

Physical quantities defined as dynamic objects (structures) in matlab

I Properties of medium (φ, K, net-to-gross, . . .)

I Reservoir fluids (ρ, µ, kr, PVT, . . .)

I Driving forces (wells, boundary conditions, sources)

I Reservoir state (pressure, fluxes, saturations, etc)

All MRST operations accept, manipulate and produce objects of these types.

Physical quantities are assumed to be in SI units ([K] = m2, [µ] = Pa · s etc).

3 / 9

How is MRST Designed?

MRST Core

I Routines for creating and manipulating grids and physical properties

I Basic flow and transport solvers (sequential splitting) for incompressible
and immiscible flow

Functionality is stable and not expected to change in future releases

Modules

Add-on software that extends, complements, and overrides existing MRST
features. Presently implements more advanced solvers and tools:

I automatic differentiation, inexpensive flow diagnostics

I adjoint methods, black-oil models, vertically integrated models, . . .

Some are stable. Some are constantly changing to support ongoing research.
New modules initiated by others are much welcome

3 / 9

Application Examples
Modelling Faults in Consistent Schemes

Faults modelled as internal boundaries,
with internal jump conditions

u±f = Tf (π
∓
f − π

±
f)

Gives an extended hybrid system. In
addition, method to convert TPFA
multipliers to fault transmissibility Tf

Water cuts from producer #1

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

without multiplier

with multiplier

+ = TPFA solution · = mimetic

 0.1

1

10

100

1000

4 / 9

Application Examples
Production optimisation

Specialised simulator: using different
grids for pressure and transport

Multiscale Pressure Solver

Transport on Flow-adapted Grid

Water-flood Optimisation

Reservoir geometry from a Norwegian Sea field

0 2 4 6 8 10
0

2

4

6

8

10

12

14
x 10

6

Time [years]

C
um

.P
ro

d.
 [m

3]

Oil initial
Oil optimized
Water initial
Water optimized

Forward simulations:
44 927 cells, 20 time steps, < 5 sec in matlab

5 / 9

Automatic Differentiation

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated

6 / 9

Automatic Differentiation

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated

6 / 9

Automatic Differentiation

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated

6 / 9

Fully Implicit Solvers in MRST Based on AD

Black-oil Mass Balance Equations (w/dissolved gas)
∂t(φbwsw) + div(bwvw) = qw

∂t(φboso) + div(bovo) = qo

∂t(φ(bgsg +Rsboso)) + div(bgvg +Rsbovo) = qg

MRST Implementation; po, sw, sg and Rs as Primary Degrees of Freedom

F{w} = (pv/dt).*(bW.*sW - bW(p0).*sW0) + div(bWvW);

F{o} = (pv/dt).*(bO.*(1-sW-sG) - bO(p0,rs0).*(1-sW0-sG0)) + div(bOvO);

F{g} = (pv/dt).* ...

(bG.*sG + rs.*bO.*(1-sW-sG) - ...

bG(p0).*sG0 + rs0.*bO(p0,rs0).*(1-sW0-sG0)) + ...

div(bGvG + rsbOvO)

Residuals in F{i}.val and the associate Jacobians in F{i}.jac. Technically achieved
by representing primary degrees of freedom and other quantities as types for which
arithmetic operations are overloaded to also compute derivatives through chain rule.

7 / 9

Fully Implicit Solvers in MRST Based on AD

Black-oil Mass Balance Equations (w/dissolved gas)
∂t(φbwsw) + div(bwvw) = qw

∂t(φboso) + div(bovo) = qo

∂t(φ(bgsg +Rsboso)) + div(bgvg +Rsbovo) = qg

MRST Implementation; po, sw, sg and Rs as Primary Degrees of Freedom

F{w} = (pv/dt).*(bW.*sW - bW(p0).*sW0) + div(bWvW);

F{o} = (pv/dt).*(bO.*(1-sW-sG) - bO(p0,rs0).*(1-sW0-sG0)) + div(bOvO);

F{g} = (pv/dt).* ...

(bG.*sG + rs.*bO.*(1-sW-sG) - ...

bG(p0).*sG0 + rs0.*bO(p0,rs0).*(1-sW0-sG0)) + ...

div(bGvG + rsbOvO)

Residuals in F{i}.val and the associate Jacobians in F{i}.jac. Technically achieved
by representing primary degrees of freedom and other quantities as types for which
arithmetic operations are overloaded to also compute derivatives through chain rule.

7 / 9

The Approach Produces Promising Results
SPE 9 Benchmark Case

http://www.sintef.no/Projectweb/MRST/Modules/

Fully-implicit-solvers-based-on-automatic-differentiation/

8 / 9

http://www.sintef.no/Projectweb/MRST/Modules/Fully-implicit-solvers-based-on-automatic-differentiation/
http://www.sintef.no/Projectweb/MRST/Modules/Fully-implicit-solvers-based-on-automatic-differentiation/

The Approach Produces Promising Results
SPE 9 Benchmark Case

http://www.sintef.no/Projectweb/MRST/Modules/

Fully-implicit-solvers-based-on-automatic-differentiation/

8 / 9

http://www.sintef.no/Projectweb/MRST/Modules/Fully-implicit-solvers-based-on-automatic-differentiation/
http://www.sintef.no/Projectweb/MRST/Modules/Fully-implicit-solvers-based-on-automatic-differentiation/

	Introduction

