Localized Linearization

Andreas Lauser

March 12, 2015

y -

- POVVARE4

v

_The Problem

A
7 POVWARES
~

CLK: 3500 MHz (X64 Mode)
L1 Cache: 32K 233336 MBss

B2 Cache: 256K 57377 MB/s
i Cache: 15M 28688 MB/s
: 326 12683 MB/S

Caches are small,
memory is slow,
let’s do it on the GPU!

Or not?!

Overview y -
: 7 POWAREA

ﬂ Synthetic Example

e Reservoir Simulations

Overview y -
' /7 POWARE4

ﬂ Synthetic Example

Field Discretization y -
: 7 POVVARES

Scalar field: Function f: Q — R were Q C R" forsome ne N/

Usual discretization approach:

@ Define the value of the field at a finite number of degrees of
freedom (DOFs)
@ Interpolate in-between
e Approximates field by a vector of scalars

| Grids

y -]
7 POWARE4

L, . . . | .
] L—

Partitioning Q2 of into smaller sets w;:
@ Sub-domains w; usually exhibit regular shape
e Simplices, parallelepipeds, etc.
@ w; usually called element or cell

@ In the following: Cell-centered finite volume method (i.e.,
one DOF per cell)

Combining Fields -
| n 7 — POWAR4
Yy
h(x) = (f *x g)(x) = f(X) x g(x) where x € Q
Left hand side: Right hand side:

@ lterate over all DOFs, @ Calculate all values of f,
calculate the values f(x) then all of g, then combine
and g(x) and combine them
them locally @ (in the following called

@ (in the following called “grid based/global
“element based/localized approach”)

approach”)

Simple Example: n(x) = |x| \/|x yay
p p () ‘ ‘ | | 7 POVWARES
ﬁ
Consider the following:
f(x)=| E Q(X = \/
*x = - \/
Localized: Gilobal:
for i in cells: for i in cells:
x = abs(pos(i)) f[i] = abs(pos(i))
fl[i] = x for i in cells:
gli] = sqrt(x) gli] = sqgrt (abs(pos(i)))
h[ii] = f[i] = g[i] for i in cells:
h[i] = f[i] * gl[i]

_Performance' : hx) = x| /x|

7 POVVARE4

140

T
evals per usec m—m

local global

Machine: Intel Core i7-5930K
Compiler: GCC 4.8.3, '-O3 -march=native -ffast-math’

Ratio Localized/Global: =~ 1.60

1https ://poware.de/adue3aib/global-vs—-local.tar.gz

e —

https://poware.de/adue3aib/global-vs-local.tar.gz

Simple Example: Notes -
. 7 POVARE4

@ Both approaches also applicable for more complicated
functions (e.g., relperms) and operators (e.g., gradients).
@ Due to prefetching, performance advantage of localized
approach is smaller for more expensive f or g
@ Very often, function to be computed is very cheap
eeg h=1-f
o (Off topic: Iterative linear solvers particularly affected)

Advantages and Disadvantages -
. = — Z_____POVWAR4

Advantages of the localized approach:
@ Better cache locality
@ Easier to parallelize
@ Only a single loop
Advantages of the global approach:
@ More modular representation of the underlying equations

o Simplifies/allows implementation of special purpose PDE
languages like DOLFIN? or Equelle®

2http://fenicsproject.org/
3http: //equelle.org/

e

http://fenicsproject.org/
http://equelle.org/

Overview y -
: 7 POWAREA

e Reservoir Simulations

| Preceeding Remarks

L
7 POVARE4
ﬁ

OPM is one of the few projects which where an
“apples-to-apples” comparison can be attempted:

@ opm-autodiff uses the global approach to linearization
@ eWoms/ebos uses the localized approach
@ Grid and deck input parameters identical/very similar

Other differences in implementation are pretty large:

@ All tricks like partial relinearization and linearization
rescaling are disabled

@ Results should be taken with a grain of salt!

| Boring Problem: SPE-1

7 POVWARE4

owoms

2500

2000
o

400

BHP of the “PRODUCER” well vs. time

.

| Large Boring Problem: Refined SPE1

7 POVVARE4

4500

3500

3000

2000

1000
o

200 400 600 500 1000 1200

BHP of the “PRODUCER” well vs. time

e

Performance: Apples and Bananas -
. Z_____POVWAR4

ewoms opm-autodiff

Overall time of the refined SPE1 problem. Ratio: 1.98

Performance: Apples and Bananas -
. Z_____POVWAR4

ewoms opm-autodiff

Overall time of the refined SPE1 problem. Ratio: 1.98

@ Linear solver also suffers from “memory bandwith
bottleneck”

_Performance: Apples and Oranges

7 POVVARE4

seconds mm—

ewoms opm-autodiff

Aggregate linearization time of the refined SPE1 problem. Ratio: 1.43

_Performance: Apples and Oranges

7 POVVARE4

seconds mm—

ewoms opm-autodiff

Aggregate linearization time of the refined SPE1 problem. Ratio: 1.43

@ opm-autdiff requires a few iterations more

_Performance: Green Apples and Red Apples

7 POVVARE4

ewoms opm-autodiff

Iteration adjusted linearization time for the refined SPE1 problem.
Ratio: 1.26

_Performance: Green Apples and Red Apples

7 POVVARE4

ewoms opm-autodiff

Iteration adjusted linearization time for the refined SPE1 problem.
Ratio: 1.26

@ opm-autodiff uses automatic differentiation, eWoms finite
differences

Summary -
' Z_____POVWAR4

@ Performance comparisons are hard

@ Quality of results of all simulators comparable for the
unrefined and refined SPE-1 problems.

@ Localized linearization approach saw better performance

o Likely faster in principle because it reduces the “RAM
bottleneck” problem

Summary -
' Z_____POVWAR4

@ Performance comparisons are hard

@ Quality of results of all simulators comparable for the
unrefined and refined SPE-1 problems.

@ Localized linearization approach saw better performance

o Likely faster in principle because it reduces the “RAM
bottleneck” problem

Thank you for your attention.

