
POWARE

Localized Linearization

Andreas Lauser

March 12, 2015

POWARE
The Problem

Caches are small,
memory is slow,

let’s do it on the GPU!

Or not?!

POWARE
Overview

1 Synthetic Example

2 Reservoir Simulations

POWARE
Overview

1 Synthetic Example

2 Reservoir Simulations

POWARE
Field Discretization

Scalar field: Function f : Ω 7→ R were Ω ⊆ Rn for some n ∈ N

Usual discretization approach:
Define the value of the field at a finite number of degrees of
freedom (DOFs)
Interpolate in-between

Approximates field by a vector of scalars

POWARE
Grids

Partitioning Ω of into smaller sets ωi :
Sub-domains ωi usually exhibit regular shape

Simplices, parallelepipeds, etc.

ωi usually called element or cell
In the following: Cell-centered finite volume method (i.e.,
one DOF per cell)

POWARE
Combining Fields

h(x) = (f ? g)(x) = f (x) ? g(x) where x ∈ Ω

Left hand side:
Iterate over all DOFs,
calculate the values f (x)
and g(x) and combine
them locally
(in the following called
“element based/localized
approach”)

Right hand side:
Calculate all values of f ,
then all of g, then combine
them
(in the following called
“grid based/global
approach”)

POWARE
Simple Example: h(x) = |x|

√
|x|

Consider the following:

f (x) = |x| , g(x) =
√
|x|

? ≡ ·, h(x) = |x|
√
|x|

Localized:
for i in cells:

x = abs(pos(i))
f[i] = x
g[i] = sqrt(x)
h[i] = f[i] * g[i]

Global:
for i in cells:
f[i] = abs(pos(i))

for i in cells:
g[i] = sqrt(abs(pos(i)))

for i in cells:
h[i] = f[i] * g[i]

POWARE
Performance1: h(x) = |x|

√
|x|

Machine: Intel Core i7-5930K
Compiler: GCC 4.8.3, ’-O3 -march=native -ffast-math’

Ratio Localized/Global: ≈ 1.60

1https://poware.de/adue3aib/global-vs-local.tar.gz

https://poware.de/adue3aib/global-vs-local.tar.gz

POWARE
Simple Example: Notes

Both approaches also applicable for more complicated
functions (e.g., relperms) and operators (e.g., gradients).
Due to prefetching, performance advantage of localized
approach is smaller for more expensive f or g
Very often, function to be computed is very cheap

e.g. h = 1− f
(Off topic: Iterative linear solvers particularly affected)

POWARE
Advantages and Disadvantages

Advantages of the localized approach:
Better cache locality
Easier to parallelize

Only a single loop

Advantages of the global approach:
More modular representation of the underlying equations

Simplifies/allows implementation of special purpose PDE
languages like DOLFIN 2 or Equelle 3

2http://fenicsproject.org/
3http://equelle.org/

http://fenicsproject.org/
http://equelle.org/

POWARE
Overview

1 Synthetic Example

2 Reservoir Simulations

POWARE
Preceeding Remarks

OPM is one of the few projects which where an
“apples-to-apples” comparison can be attempted:

opm-autodiff uses the global approach to linearization
eWoms/ebos uses the localized approach
Grid and deck input parameters identical/very similar

Other differences in implementation are pretty large:
All tricks like partial relinearization and linearization
rescaling are disabled
Results should be taken with a grain of salt!

POWARE
Boring Problem: SPE-1

BHP of the “PRODUCER” well vs. time

POWARE
Large Boring Problem: Refined SPE1

BHP of the “PRODUCER” well vs. time

POWARE
Performance: Apples and Bananas

Overall time of the refined SPE1 problem. Ratio: 1.98

Linear solver also suffers from “memory bandwith
bottleneck”

POWARE
Performance: Apples and Bananas

Overall time of the refined SPE1 problem. Ratio: 1.98

Linear solver also suffers from “memory bandwith
bottleneck”

POWARE
Performance: Apples and Oranges

Aggregate linearization time of the refined SPE1 problem. Ratio: 1.43

opm-autdiff requires a few iterations more

POWARE
Performance: Apples and Oranges

Aggregate linearization time of the refined SPE1 problem. Ratio: 1.43

opm-autdiff requires a few iterations more

POWARE
Performance: Green Apples and Red Apples

Iteration adjusted linearization time for the refined SPE1 problem.

Ratio: 1.26

opm-autodiff uses automatic differentiation, eWoms finite
differences

POWARE
Performance: Green Apples and Red Apples

Iteration adjusted linearization time for the refined SPE1 problem.

Ratio: 1.26

opm-autodiff uses automatic differentiation, eWoms finite
differences

POWARE
Summary

Performance comparisons are hard
Quality of results of all simulators comparable for the
unrefined and refined SPE-1 problems.
Localized linearization approach saw better performance

Likely faster in principle because it reduces the “RAM
bottleneck” problem

Thank you for your attention.

POWARE
Summary

Performance comparisons are hard
Quality of results of all simulators comparable for the
unrefined and refined SPE-1 problems.
Localized linearization approach saw better performance

Likely faster in principle because it reduces the “RAM
bottleneck” problem

Thank you for your attention.

