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POWARE
The Problem

Caches are small,
memory is slow,

let’s do it on the GPU!

Or not?!
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POWARE
Field Discretization

Scalar field: Function f : Ω 7→ R were Ω ⊆ Rn for some n ∈ N

Usual discretization approach:
Define the value of the field at a finite number of degrees of
freedom (DOFs)
Interpolate in-between

Approximates field by a vector of scalars



POWARE
Grids

Partitioning Ω of into smaller sets ωi :
Sub-domains ωi usually exhibit regular shape

Simplices, parallelepipeds, etc.

ωi usually called element or cell
In the following: Cell-centered finite volume method (i.e.,
one DOF per cell)
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Combining Fields

h(x) = (f ? g)(x) = f (x) ? g(x) where x ∈ Ω

Left hand side:
Iterate over all DOFs,
calculate the values f (x)
and g(x) and combine
them locally
(in the following called
“element based/localized
approach”)

Right hand side:
Calculate all values of f ,
then all of g, then combine
them
(in the following called
“grid based/global
approach”)



POWARE
Simple Example: h(x) = |x|

√
|x|

Consider the following:

f (x) = |x| , g(x) =
√
|x|

? ≡ ·, h(x) = |x|
√
|x|

Localized:
for i in cells:

x = abs(pos(i))
f[i] = x
g[i] = sqrt(x)
h[i] = f[i] * g[i]

Global:
for i in cells:
f[i] = abs(pos(i))

for i in cells:
g[i] = sqrt(abs(pos(i)))

for i in cells:
h[i] = f[i] * g[i]



POWARE
Performance1: h(x) = |x|

√
|x|

Machine: Intel Core i7-5930K
Compiler: GCC 4.8.3, ’-O3 -march=native -ffast-math’

Ratio Localized/Global: ≈ 1.60

1https://poware.de/adue3aib/global-vs-local.tar.gz

https://poware.de/adue3aib/global-vs-local.tar.gz
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Simple Example: Notes

Both approaches also applicable for more complicated
functions (e.g., relperms) and operators (e.g., gradients).
Due to prefetching, performance advantage of localized
approach is smaller for more expensive f or g
Very often, function to be computed is very cheap

e.g. h = 1− f
(Off topic: Iterative linear solvers particularly affected)
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Advantages and Disadvantages

Advantages of the localized approach:
Better cache locality
Easier to parallelize

Only a single loop

Advantages of the global approach:
More modular representation of the underlying equations

Simplifies/allows implementation of special purpose PDE
languages like DOLFIN 2 or Equelle 3

2http://fenicsproject.org/
3http://equelle.org/

http://fenicsproject.org/
http://equelle.org/


POWARE
Overview

1 Synthetic Example

2 Reservoir Simulations



POWARE
Preceeding Remarks

OPM is one of the few projects which where an
“apples-to-apples” comparison can be attempted:

opm-autodiff uses the global approach to linearization
eWoms/ebos uses the localized approach
Grid and deck input parameters identical/very similar

Other differences in implementation are pretty large:
All tricks like partial relinearization and linearization
rescaling are disabled
Results should be taken with a grain of salt!
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BHP of the “PRODUCER” well vs. time



POWARE
Large Boring Problem: Refined SPE1

BHP of the “PRODUCER” well vs. time
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Linear solver also suffers from “memory bandwith
bottleneck”
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Summary

Performance comparisons are hard
Quality of results of all simulators comparable for the
unrefined and refined SPE-1 problems.
Localized linearization approach saw better performance

Likely faster in principle because it reduces the “RAM
bottleneck” problem

Thank you for your attention.
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