The solvent model for CO2-EOR simulations

OPM meeting in Oslo

Why CO2-EOR?

- > PARIS COP21
- > IEA: CO2-EOR a stepping stone for CCS
- > OG21 strategy: Make CO2 available offshore for EOR and/or storage

KLIMAGASSUTSLIPP FRA OLJE- OG GASS VIRKSOMHET I 2013 Utslipp til luft (millioner tonn CO₂-ekvivalenter)

Totale klimagassutslipp

CO2-EOR. How does it work?

- > Multi-contact miscible displacement
- > CO2 \rightarrow OIL (Condensing)
 - Swelling of the oil phase
 - Reduces viscosity of the oil
 - Increases density of oil (brings it closer to water)
- > OIL \rightarrow CO2 (Vaporization)
 - Extraction of lighter hydrocarbons
 - Increases viscosity of the gas
- Lowers the interfacial tension between the CO2 rich gas phase and the oil phase. → lower residual oil saturation.
- Forms single phase locally at minimum miscibility pressure (MMP)
- > Dispersion
- > CO2 \rightarrow Water (Dissolve)

Why extended black-oil (solvent) simulator?

- Gas and oil is represented by three-pseudo components (oil, solution gas, and injected solvent)
- > Effective hydrocarbon relative permeability and viscosity.

> PROS

- Use existing blackoil models.
- Computationally more efficient than compositional simulators.
- > CONS
 - Can we trust the results?

Model formulation

> Effective hydrocarbon relative permeability

•
$$k_{roe} = M \cdot \left(\frac{S_o - S_{or}}{S_n - S_{gc} - S_{or}}\right) \cdot k_{rn} + (1 - M) \cdot k_{ro}$$

• $k_{r*e} = M \cdot \left(\frac{S_g + S_s - S_{gc}}{S_n - S_{gc} - S_{or}}\right) \cdot k_{rn} + (1 - M) \cdot k_{r*}$
* $= g: \qquad k_{rg} = \frac{S_g}{S_g + S_s} k_{rg} (S_s + S_g) \text{ (gas component)}$
* $= s: \qquad k_{rs} = \frac{S_s}{S_g + S_s} k_{rg} (S_s + S_g) \text{ (solvent component)}$

$$\begin{split} M &= M(pressure, solvent\ fraction): \ \text{Miscibility function} \\ k_{ro}: \ \text{oil\ rel.perm} \\ k_{rg}: \ \text{gas\ rel.perm} \\ k_{rn}: \ \text{hydrocarbon\ to\ water\ rel.perm} \\ S_{or}: \ \text{residual\ oil\ saturation} \\ S_{gc}: \ \text{critical\ gas\ saturation} \end{split}$$

Model formulation

- > Effective viscosities
 - $\mu_{oe} = \mu_o^{1-\omega} \cdot \mu_{mos}^{\omega}$
 - $\mu_{se} = \mu_s^{1-\omega} \cdot \mu_m^{\omega}$
 - $\mu_{ge} = \mu_g^{1-\omega} \cdot \mu_{msg}^{\omega}$

 μ_{mos} : fully mixed viscosity of oil and solvent (using the ¼ power mixing rule) μ_m : fully mixed viscosity of oil, gas and solvent (using the ¼ power mixing rule) μ_{msg} : fully mixed viscosity of solvent and gas (using the ¼ power mixing rule) ω : is the Todd-Longstaff mixing parameter

- > Other effects
 - Effective densities
 - Modified residual oil saturation / critical gas saturation
 - Pressure effects on capillary pressure, viscosity and density miscibility
 - Pressure dependent Todd-Longstaff parameter

Comparison SPE 5:

- > Comparison of 4-component miscible simulators and compositional simulators
- > Three cases. Where average reservoir pressure is:
 - Much lower than MMP (immiscible case) 1.
 - Near or above MMP 2.
 - Below first, new MMP after re-pressurizing 3.

PROD

Comparison SPE 5: (OPM-FLOW, Eclipse)

Comparison SPE 5: (OPM-FLOW, Eclipse)

Field scale simulations

> Setup

- Run 5295 days of history.
- Group controlled production wells.
- CO2 injected from day 5479
- Linear ramp between 100-250
 Barsa to model pressure dependency in the miscibility
- The pressure dependency in the Todd-Longstaff parameter is neglected.

Field scale simulations (OPM-FLOW, Eclipse)

Field scale simulations (OPM-FLOW, Eclipse)

Field scale simulations (OPM-FLOW, Eclipse)

Summary

- > FLOW-SOLVENT. Extended black-oil model for CO2-EOR simulations
- > Benchmarked against Eclipse
- > New feature implemented. Pressure depended Todd-Longstaff parameter.
- > Discussion:
 - Can the relevant CO2-EOR physics be modeled using an extended black-oil (solvent) model?
 - How to determine the Todd-Longstaff parameter?