
PorePy: A Python Simulation
Tool for Fractured and

Deformable Porous Media
Eirik Keilegavlen, Alessio Fumagalli, Runar Berge, Ivar Stefansson

Summary

• Meshing and discretization of dynamics in fractured rocks

• Built on discrete fracture-matrix (DFM) approach

• Automatic meshing of 2D and 3D fracture geometries

• Discretization schemes
• Diffusion equation: TPFA, MPFA, mixed VEM

• Elasticity and fracture deformation: MPSA

• Visualization with Paraview

Motivation

Geothermal energy storage and extraction

Simulation needs (dictated by ongoing projects):

• Flow and transport in fractured rocks

• Collaboration with geologists – (quasi)-realistic fracture networks

• Sliding of existing fractures – elasticity and fracture deformation

Coupled flow in matrix and fractures

Collaboration with geologists

Permeability increase by hydroshearing

• Induced sliding along existing fractures.
• Results in permeability increase.
• Interaction between fluid flow and rock mechanics.

Permeability increases

Estimated induced seismicity

Typical research tasks

• Develop and test discretization schemes

• Numerics for multi-physics couplings

• Identify dominant physical processes

Conceptual numerical model

Coupling between dimensions

Flux law:

𝒒𝑑 = −𝑲𝑇𝛻𝑝
𝑑 , 𝑑 = 1, 2, 3

Conservation:
𝛻 ⋅ 𝒒𝑑 = 𝑓𝑑 , 𝑑 = 1, 2, 3

External boundary conditions:
𝑝 = 𝑝𝐷 𝑜𝑛 𝜕Ω𝐷

𝑑

𝒒 ⋅ 𝒏 = 𝑞𝑁 𝑜𝑛 𝜕Ω𝑁
𝑑

Ω0

Ω1
Ω2

Coupling between dimensions

Flux law:

𝒒𝑑 = −𝑲𝑇𝛻𝑝
𝑑 , 𝑑 = 1, 2, 3

Conservation:
𝛻 ⋅ 𝒒3 = 𝑓3

𝛻 ⋅ 𝒒𝑑 = 𝑓𝑑 + 𝜆𝑑+1,𝑑 , 𝑑 = 0, 1, 2

External boundary conditions:
𝑝 = 𝑝𝐷 𝑜𝑛 𝜕Ω𝐷

𝑑

𝒒 ⋅ 𝒏 = 𝑞𝑁 𝑜𝑛 𝜕Ω𝑁
𝑑

Interface law:
𝜆𝑑,𝑑−1 = 𝐾𝑛 𝑝𝑑 − 𝑝𝑑−1

Boundary condition on interface:
𝒒𝑑 ⋅ 𝒏 = 𝜆𝑑,𝑑−1

Ω0

Ω1
Ω2

𝜆2,1

𝜆2,1
Boon, Nordbotten, Yotov: Robust discretization of flow in porous media. Arxiv: 1601.06977
Nordbotten, Boon: Modeling, structure and discretization of mixed-dimensional PDEs, Arxiv: 1705.06876

Implementation needs

1. Mixed-dimensional mesh

2. Discretization within each dimension

3. Coupling conditions

Meshing in fractured domains

Meshing of fractured domains

• Fractures represented as constraints for meshing algorithm

• Complex fracture networks: Mesh size dictated by geometry, rather
than accuracy needs

• (Non-commercial) meshing software tends to require non-
intersecting constraints
• Preprocessing required – computational geometry

• Well established in 2D, considerably more difficult in 3D

Meshing of fractured domains in PorePy

• Automatic handling of intersections
• Quite stable in 2D

• Workable, but far from perfect, in 3D

• Actual meshing by Gmsh

• Automatic mesh size tuning based on fracture geometry and (two)
user parameters
• 2D: Quite mature

• 3D: Is improving

• No silver bullets: Small angles and close objects give bad meshes

Geuzaine, C. and Remacle, J.-F: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.
IJNME, 2009

3d mesh left out for clarity

Mixed-dimensional meshes
Data structures and implementation

Mixed-dimensional grid hierarchy

3 intersecting planes embedded in
3D domain:

• 3 2D objects
• 3 1D intersection lines (colored)
• 1 0D intersection of intersections

Grid hierarchy

Co-dimension 1 couplings

Graph representation Each node represent a simulation domain
Edges gives rise to boundary conditions / sources

Mixed-dimensional grid in PorePy

Define lower-dimensional objects
f_1 = Fracture([[1, 0, -1], [1.2, 0, -1], [1, 0, 1], [-1, 0, 1]])
f_2 = …

Construct graph for mixed-dimensional grid, and data storage
Includes processing of geometry
mesh = meshing.simplex_grid([f_1, f_2, …])

Loop over nodes
for g, data in mesh:

data[‘conductivity’] = … # Assign mono-dimensional data

Loop over edges:
for e, data in mesh.edges():

data[‘normal_perm’] = … # Assign inter-dimensional data

Possible intersection configurations

Partially shared segmentIntersecting segments L-intersection

Individual grids: Data structure (and implementation) is to a large part a Python translation / extension of
corresponding concepts in the Matlab Reservoir Simulation Toolbox.

Discretization of mixed-
dimensional problems

Currently implemented methods

• Diffusion equation (mixed-dimensional):
• TPFA, MPFA, Virtual Element Method (mixed form)

• Advection-diffusion equation (mixed-dimensional):
• Advection: Upstream weighting
• Diffusion: TPFA, MPFA
• Various time stepping schemes

• Linear elasticity (mono-dimensional):
• Multi-point stress approximations (MPSA)
• Coupling to fracture deformation models

• Poro-elasticity (mono-dimensional):
• Coupling of MPFA and MPSA

Discretization of pressure equation

Discretization on individual grids
mono_discr = TPFA()

Corresponding discretization of inter-dimensional couplings
coupling_discr = TfpaCoupling(mono_discr)

Combined discretization
combined_discr = Coupler(mono_discr, coupling_discr)

Loop over all grids and edges, discretize, assemble
A, b = solver_coupler.matrix_rhs(mesh)

Linear solver
pressure_flux = scipy.sparse.linalg.solve(A, b)

Implement new numerical scheme?

1. Discretization on individual grids

2. Handle Neumann boundary conditions

3. Handle source terms

Discretization of pressure equation

Discretization on individual grids
mono_discr = DualVem()
mono_discr = TPFA()

Corresponding discretization of inter-dimensional couplings
coupling_discr = DualCoupling(mono_discr)

Combined discretization
combined_discr = Coupler(mono_discr, coupling_discr)

Loop over all grids and edges, discretize, assemble
A, b = solver_coupler.matrix_rhs(mesh)

Linear solver
pressure_flux = scipy.sparse.linalg.solve(A, b)

More user-friendly wrappers for problem statements, parameter assignment
and discretization / solver is currently being developed.

Linear system structure

Linear system structure
3D

2D

0D

1D

Example simulations
1. Coupled flow and transport

2. Hydroshearing / low-pressure stimulation

Application: Advection-diffusion

Setup:
Flow from bottom to top
~20 fractures

Modeling:
1. Flow field from elliptic pressure equation
2. Concentration by advection-diffusion equation

Numerics:
~8000 cells, coarsened from simplex grid
Cells of dimensions {0, 1, 2, 3}

Flow: Mixed virtual element method
Transport: Finite volume

Single cell hugging
a fracture

Pressure and fluxes Tracer concentration (different time steps)

Reference concentration obtained on simplex grid

Application: Stimulation of geothermal
reservoirs
• Physical process: Fracture slip due to interaction between

fracture fluid pressure and in situ stress field

• Result: Increased fracture width, increased permeability

• Key variables: Stress on fracture surfaces, fluid pressure in
fracture

Setup:
Fluid injection, followed by fluid migration in
fracture network (and surroundings).

Modeling:
Coupling of flow, elasticity and fracture
deformation.

Numerics:
Flow: Finite volume method (TPFA)
Elasticity: Finite volume method (MPSA)

Mixed-dimensional approach for fluid flow only

The road ahead
Likely improvements in the coming monhts

Stronger focus on thermal effects

Multi-physics couplings

• Pressure-temperature couplings

• Thermo-elasticity

Numerical considerations:

• Linear solvers

• Coupling strength

Stability and performance

Current weak points:

1. The code is purely sequential – limited capacity for large-scale
networks
• Likely solution: Use suitable software framework (dune?) as backend

2. Meshing algorithm in 3d is only semi-stable
• Gradual progress expected

• Long term goal (dream?): Automatic meshing of (more or less) stochastic
networks

Features (likely) still missing in 1-2 years

• Multiphase flow

• Focus on optimal performance

• …

Access

• GPL licence

• Code hosted on GitHub

• Installation: pip install porepy (+ some more)
• Detailed instructions on GitHub repository

• Installation from source recommended

• Getting started:
• Tutorials (jupyter notebooks)

• Examples (including examples from papers / preprints)

www.github.com/pmgbergen/porepy

