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Summary

* Meshing and discretization of dynamics in fractured rocks
* Built on discrete fracture-matrix (DFM) approach
* Automatic meshing of 2D and 3D fracture geometries

* Discretization schemes
» Diffusion equation: TPFA, MPFA, mixed VEM
 Elasticity and fracture deformation: MPSA

e Visualization with Paraview



Motivation



Geothermal energy storage and extraction

Simulation needs (dictated by ongoing projects):

* Flow and transport in fractured rocks

* Collaboration with geologists — (quasi)-realistic fracture networks
* Sliding of existing fractures — elasticity and fracture deformation



Coupled flow in matrix and fractures
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Permeability increase by hydroshearing
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Typical research tasks

* Develop and test discretization schemes
* Numerics for multi-physics couplings

* |dentify dominant physical processes



Conceptual numerical model



Coupling between dimensions

Flux law:
d = _K.Vp% d=1,2,3
q T p ) ) )

Conservation:
V-q¢=rf%, d=12,3

External boundary conditions:
p = pP on 904
q-n=qyondQ§



Coupling between dimensions

Flux l[aw: Interface law:

g% = —K;Vp?, d=1,2,3 A%t = K (p® —p?7T)
Boundary condition on interface:

Conservation: q® -n =441

V- q3 — f3

V- q® - fé+[29+14],d =0,1,2

External boundary conditions:
p = pP on 004
q-n=qyonoQf

Boon, Nordbotten, Yotov: Robust discretization of flow in porous media. Arxiv: 1601.06977
Nordbotten, Boon: Modeling, structure and discretization of mixed-dimensional PDEs, Arxiv: 1705.06876



Implementation needs

1. Mixed-dimensional mesh
2. Discretization within each dimension

3. Coupling conditions



Meshing in fractured domains



Meshing of fractured domains

* Fractures represented as constraints for meshing algorithm

* Complex fracture networks: Mesh size dictated by geometry, rather
than accuracy needs

* (Non-commercial) meshing software tends to require non-
Intersecting constraints

* Preprocessing required — computational geometry

* Well established in 2D, considerably more difficult in 3D




Meshing of fractured domains in PorePy

e Automatic handling of intersections

e Quite stable in 2D
* Workable, but far from perfect, in 3D

e Actual meshing by Gmsh

* Automatic mesh size tuning based on fracture geometry and (two)
user parameters
* 2D: Quite mature
* 3D: Isimproving

* No silver bullets: Small angles and close objects give bad meshes

Geuzaine, C. and Remacle, J.-F: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.
IJNME, 2009
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Mixed-dimensional meshes



Mixed-dimensional grid hierarchy

3 intersecting planes embedded in
3D domain:

e 3 2D objects
3 1D intersection lines (colored)
« 1 OD intersection of intersections
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G F'd p h re p rese ntat|0 N Each node represent a simulation domain

Edges gives rise to boundary conditions / sources

M




Mixed-dimensional grid in PorePy

# Define lower-dimensional objects
+f 1 = Fracture([[1, O, -1], [1.2, O, -1], [1, o, 1], [-1, o, 1]])
f 2

# Construct graph for mixed-dimensional grid, and data storage
# Includes processing of geometry
mesh = meshing.simplex grid([f_ 1, f 2, ..])

# Loop over nodes
for g, data in mesh:
data[ ‘conductivity’] = .. # Assign mono-dimensional data

# Loop over edges:
for e, data in mesh.edges():
datal ‘normal perm’] = .. # Assign inter-dimensional data




Possible intersection configurations

Intersecting segments Partially shared segment L-intersection



Individual grids: Data structure (and implementation) is to a large part a Python translation / extension of

corresponding concepts in the Matlab Reservoir Simulation Toolbox.
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Discretization of mixed-
dimensional problems



Currently implemented methods

e Diffusion equation (mixed-dimensional):
 TPFA, MPFA, Virtual Element Method (mixed form)

» Advection-diffusion equation (mixed-dimensional):

e Advection: Upstream weighting
e Diffusion: TPFA, MPFA
e Various time stepping schemes

* Linear elasticity (mono-dimensional):
e Multi-point stress approximations (MPSA)
* Coupling to fracture deformation models

* Poro-elasticity (mono-dimensional):
* Coupling of MPFA and MPSA



Discretization of pressure equation

# Discretization on individual grids
mono_discr = TPFA()

# Corresponding discretization of inter-dimensional couplings
coupling discr = TfpaCoupling(mono_discr)

# Combined discretization
combined discr = Coupler(mono_discr, coupling discr)

# Loop over all grids and edges, discretize, assemble
A, b = solver coupler.matrix_rhs(mesh)

# Linear solver
pressure_flux = scipy.sparse.linalg.solve(A, b)




Implement new numerical scheme?

1. Discretization on individual grids
2. Handle Neumann boundary conditions

3. Handle source terms




Discretization of pressure equation

More user-friendly wrappers for problem statements, parameter assignment

and discretization / solver is currently being developed.



Linear system structure
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Linear system structure
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Example simulations

1. Coupled flow and transport

2. Hydroshearing / low-pressure stimulation



Application: Advection-diffusion

Setup:
Flow from bottom to top
~20 fractures

Modeling:
1. Flow field from elliptic pressure equation
2. Concentration by advection-diffusion equation

Numerics:
~8000 cells, coarsened from simplex grid
Cells of dimensions {0, 1, 2, 3}

Flow: Mixed virtual element method
Transport: Finite volume

Single cell hugging
a fracture




Pressure and fluxes

Reference concentration obtained on simplex grid




Application: Stimulation of geothermal
reservoirs

* Physical process: Fracture slip due to interaction between
fracture fluid pressure and in situ stress field

» Result: Increased fracture width, increased permeability

* Key variables: Stress on fracture surfaces, fluid pressure in
fracture




Setup:
Fluid injection, followed by fluid migration in
fracture network (and surroundings).

Modeling:
Coupling of flow, elasticity and fracture
deformation.

Numerics:
Flow: Finite volume method (TPFA)
Elasticity: Finite volume method (MPSA)

0.000e+00

Mixed-dimensional approach for fluid flow only




The road ahead

Likely improvements in the coming monhts



Stronger focus on thermal effects

Multi-physics couplings
* Pressure-temperature couplings
* Thermo-elasticity

Numerical considerations:
e Linear solvers
* Coupling strength



Stability and performance

Current weak points:

1. The code is purely sequential — limited capacity for large-scale
networks

* Likely solution: Use suitable software framework (dune?) as backend

2. Meshing algorithm in 3d is only semi-stable
e Gradual progress expected

* Long term goal (dream?): Automatic meshing of (more or less) stochastic
networks



Features (likely) still missing in 1-2 years

* Multiphase flow
* Focus on optimal performance



Access

e GPL licence
e Code hosted on GitHub

* Installation: pip install porepy (+ some more)
* Detailed instructions on GitHub repository
* Installation from source recommended

* Getting started:
e Tutorials (jupyter notebooks)
e Examples (including examples from papers / preprints)

www.github.com/pmgbergen/porepy




