
POWARE

The eWoms Module: A Primer

Andreas Lauser

October 19, 2017

POWARE
Goals of this Talk

Intended subject of this talk:
High-level overview of the simulator part of the OPM code
base for C++ developers
Focus on the core of the numerical framework, i.e., the
eWoms module

This talk is not:
An introduction to programming, C++, the DUNE
framework, etc.

Some familiarity assumed
A guide for implementing $YOUR_FAVOURITE_FEATURE

Commercial support available

A tutorial
A detailed discussion of the technicalities

POWARE

Part I

The Zoom-in

POWARE
Overview

1 OPM: The View From Space

2 eWoms: A Birdseye View

3 Close Up: The Immiscible Model

4 Microscope: The Energy Extension

POWARE
Overview

1 OPM: The View From Space

2 eWoms: A Birdseye View

3 Close Up: The Immiscible Model

4 Microscope: The Energy Extension

POWARE
OPM: The View From Space

POWARE
OPM: Relevant Modules

POWARE
The opm-material Module

opm-material implements thermodynamic multi-phase
relations as well as constitutive relations, e.g.:

Thermodynamic representations (FluidStates)
Thermodynamic properties (FluidSystems)
Capillary-pressure & relative permability relations
(“material laws”)
Solvers for non-linear thermodynamic systems of
equations (constraint solvers, e.g. flash)

POWARE
The eWoms Module

eWoms provides a versatile, extensible and performant
numerical framework:

Models for conservation equations
Spatial and temporal discretization schemes
Linear and non-linear solvers

POWARE
The opm-simulators Module

opm-simulators features end-user ready simulator programs:
In particular, the flow simulator for ECL decks
(This module is currently undergoing a transition, many
things do actually belong someplace else)

POWARE
View form Space: Take-Home Message

Most of the numerics of flow is implemented by the framework
layer, i.e., the eWoms module!

POWARE
Overview

1 OPM: The View From Space

2 eWoms: A Birdseye View

3 Close Up: The Immiscible Model

4 Microscope: The Energy Extension

POWARE
eWoms: A Birdseye View

High level control flow:

POWARE
Important Concepts

Simulator High-level control of program execution, central
“Nexus” for all information

Model Specifies the conservation equations, primary
variables, etc. Also, spatial and temporal
discretization

Problem Specifies the physical set-up

POWARE
Central User Facing Class: The Problem

Specifies all externally “impressed” parameters:
Initial solution
Boundary conditions
Porosity
Intrinsic permeabilities
Material-law parameters
. . .

Problems are concerned with specifying the physical set-up
mostly independently of the selected model.

POWARE
Central User Facing Class: The Problem

Wait a second: There’s no problem here!

POWARE
Central User Facing Class: The Problem

Here it enters the picture!

POWARE
Overview

1 OPM: The View From Space

2 eWoms: A Birdseye View

3 Close Up: The Immiscible Model

4 Microscope: The Energy Extension

POWARE
Close Up: The Immiscible Model

Models specify conservation equations. The “immiscible” model
deals with M fluid phases and . . .

. . . assumes that fluid phases are completely immiscible

. . . conserves the mass in kg of each fluid phase

. . . selects the pressure of the first phase plus the
saturations of the first M − 1 phases as primary variables

POWARE
Intensive Quantities

Using the primary variables, compute everything else:
Saturations of all fluid phases:

SM = 1−
M−1∑
α=1

Sα

Pressures of all fluid phases using the reference phase’
pressure and the capillary pressures:

pα = p1 + pc,1→α

Phase compositions
Already specified by assuming immiscibility

Other quantities needed for the residual, e.g., ρα, µα, K
Thermodynamic relations computed opm-material or
quantities directly provided by the problem

POWARE
The Local Residual

Based on the thermodynamic state, compute the residual for a
degree of freedom:

Storage: Mass in kg/m3 for each phase at a given time t :

σα,t = φtSα,tρα,t

Fluxes: Mass in kg/(m2s) for a phase at a given time t :

ζα,t = −ρα,t
kr ,α,t

µα,t
K∇(pα,t − gρα,t)

Source: Mass change in kg/(m3s); just forward the
problem’s qα,t

POWARE
The Local Residual

Generic code calculates the local residual for phase α:

rα =
σα,t2 − σα,t1

t2 − t1
+

1
|V|

∑
∂V
|∂V| ζα,t2 − qα,t2

(for the implicit Euler time- and a finite volume space
discretization)

POWARE
Overview

1 OPM: The View From Space

2 eWoms: A Birdseye View

3 Close Up: The Immiscible Model

4 Microscope: The Energy Extension

POWARE
Microscope: The Energy Extension

Models can be extended generically
Extension mechanism is cooperative
Idea: Derive all classes from extension classes

Provide real and dummy implementations with same API

Use callbacks in the base model
Compiler optimizes dummy callbacks away

POWARE
EnergyIntensiveQuantities

template <class TypeTag, bool enableEnergy>
class EnergyIntensiveQuantities;

template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, true>
{ // ...

void updateEnergy()
{ /* ... */ }
const Evaluation& heatCapacitySolid() const
{ return heatCapSolid_; }

};

template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, false>
{ // ...

void updateEnergy()
{ }
const Evaluation& heatCapacitySolid() const
{ OPM_THROW(std::logic_error, "Energy is not conserved"); }

};

POWARE
ImmiscibleIntensiveQuantities

template <class TypeTag>
class ImmiscibleIntensiveQuantities
: public EnergyIntensiveQuantities<TypeTag,

GET_PROP_VALUE(TypeTag,
EnableEnergy)>

{
typedef EnergyIntensiveQuantities<TypeTag, GET_PROP_VALUE(

TypeTag, EnableEnergy)> EnergyIQ;
// ...
void update() { // ...
EnergyIQ::updateEnergy();

}
};

Same for the other classes which need to be aware of the
extension. (Local residual, extensive quantities, output writing
classes, . . .)

POWARE
Finally

The problem decides if energy is conserved by setting the
EnableEnergy property

If yes, it needs to provide some additional methods

SET_BOOL_PROP(Co2InjectionNiProblem, EnableEnergy, true);

POWARE

Part II

Important Concepts

POWARE
Overview

5 The Property System

6 The Parameter System

7 Validation against DuMuX

8 Demo: ebos

9 Summary & Outlook

POWARE
Overview

5 The Property System

6 The Parameter System

7 Validation against DuMuX

8 Demo: ebos

9 Summary & Outlook

POWARE
C++ Traits

Idea: Use specialization to give generic template code the
chance to take different code paths based on its template
arguments

Example:
template <class T>
struct is_float { static const bool value = false; }

template <>
struct is_float<float> { static const bool value = true; }

template <class T>
void f(const T& x)
{ std::cout << is_float<T>::value?"float: ":"non-float: "

<< x <<std::endl; }

int main()
{ f(float(1.0)); f(std::string("foo")); return 0; }

POWARE
C++ Traits

Observation: Class bodies are arbitrary
Great! This can be (mis-)used to pass any number of
compile time parameters using a single template
parameter T!
Not so great: We might want to inherit these properties

eWoms simulators define about 150 parameters

It might be nice to know which traits have been defined
where and what their values are

POWARE
The eWoms Property System

“C++ traits on steroids”: Same basic idea as C++ traits, but
with inheritance and introspection
Duct tape which holds the eWoms models together
Slightly different terminology than C++ traits:

C++ Traits eWoms property system
trait name property tag
T (specialized-for type) type tag
trait class body property

Macros to hide the template kung-fu

POWARE
The eWoms Property System: Example

namespace Ewoms { namespace Properties {
NEW_PROP_TAG(Foo);
NEW_PROP_TAG(Bar);

NEW_TYPE_TAG(BaseTypeTag);
SET_INT_PROP(BaseTypeTag, Foo, 0);
SET_INT_PROP(BaseTypeTag, Bar, 1);

NEW_TYPE_TAG(DerivedTypeTag, INHERITS_FROM(BaseTypeTag));
SET_INT_PROP(DerivedTypeTag, Foo, 2);
}}

int main() {
Ewoms::Properties::printValues<TTAG(BaseTypeTag)>();
Ewoms::Properties::printValues<TTAG(DerivedTypeTag)>();
std::cout << GET_PROP_VALUE(TTAG(DerivedTypeTag), Foo)

<< std::endl;
return 0;

}

POWARE
Overview

5 The Property System

6 The Parameter System

7 Validation against DuMuX

8 Demo: ebos

9 Summary & Outlook

POWARE
The eWoms Parameter System

eWoms properties (and C++ traits) must be set at compile
time
The eWoms parameter system deals which values which
ought to be specified at runtime:

The type of parameters are specified at compile time
For each parameter, an eWoms property with exactly the
same name must exist

The value of the property is used as default for the parameter
Parameters must be registered before their value can be
retrieved

Guarantees the help message to be comprehensive
Same parameter can be registered multiple times

Description and type specification needs to be identical

POWARE
The eWoms Parameter System: Example

In lensproblem.hh:
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX,

"Lower-left x of the lens [m].");
};

void finishInit()
{ // ...
lensLowerLeft_[0] =
EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX);

};

POWARE
Overview

5 The Property System

6 The Parameter System

7 Validation against DuMuX

8 Demo: ebos

9 Summary & Outlook

POWARE
The Lens Problem

Simple yet relevant setup from ground remediation:

POWARE
Results

Non-wetting phase saturation after 8 hrs, 20 mins

POWARE
Comparison with DuMuX

Difference of final non-wetting phase saturation between eWoms and DuMuX

(~ 25 time steps)

Results of DuMuX and eWoms basically identical!

POWARE
Overview

5 The Property System

6 The Parameter System

7 Validation against DuMuX

8 Demo: ebos

9 Summary & Outlook

POWARE
ebos

The Ecl Black-Oil Simulator
Implemented as a standard eWoms problem
The core of flow is a (relatively) thin wrapper around
ebos

Initially a proof of concept for localized linearization with
dense automatic differentiation
Well model, high-level control code and disk output code
derived from flow_legacy

POWARE
ebos

SPE-1

SPE-9

POWARE
Overview

5 The Property System

6 The Parameter System

7 Validation against DuMuX

8 Demo: ebos

9 Summary & Outlook

POWARE
Summary

eWoms/ebos constitute the core of the flow reservoir
simulator
eWoms is extremely flexible and can be quite performant
Unfortunately, eWoms thus is also somewhat complex
Many things are done differently than in other frameworks

POWARE
Outlook

Some things are set to be improved or added in the medium
term future:

Documentation, in particular introductory guides
Unification of ebos and flow
Performance is quite good, but has not been a prime focus
yet
Python scripting

Thank you for your attention.

POWARE
Outlook

Some things are set to be improved or added in the medium
term future:

Documentation, in particular introductory guides
Unification of ebos and flow
Performance is quite good, but has not been a prime focus
yet
Python scripting

Thank you for your attention.

	Important Concepts

