
Technical manual

2

Contents

1 Programming in the deck: UDQ 5

1.1 Defining a new UDQ keyword 5

1.2 Different types of UDQ - field, group and well 7

1.3 Functions available in UDQ defintions 9

1.3.1 Ordinary binary functions 9

1.3.2 Functions over a set returning a scalar 9

1.3.3 Elemental functions 10

1.3.4 Union functions . 13

1.4 Used as a control: UDA . 13

1.5 UDQ units . 14

1.6 Implementation details . 15

2 Programming in the deck: ACTIONX 19

2.1 Structure of the ACTIONX keyword 19

2.2 The structure of the Schedule implementation 21

2.3 Forward references of wells and groups 24

2.4 To enable a new keyword for ACTIONX 25

2.5 Running ACTIONX during simulation 25

2.5.1 Prepare and evaluate 26

2.5.2 Recreate Schedule . 26

2.5.3 Updating simulator data structures 26

2.6 Problems in parallel . 27

2.7 ACTIONX restart output . 28

3 Programming in the deck: PYACTION 29

3.1 Python - wrapping and embedding 29

3.2 The PYACTION keyword . 30

3.2.1 The different arguments 31

3.2.2 Holding state . 32

3.3 Changing the Schedule object - using a “normal” ACTIONX . 33

3.4 Implementing UDQ like behavior 34

3.4.1 Using PYACTION instead of UDQ + ACTIONX 35

3.4.2 Using PYACTION to report to the summary file 36

3

4 CONTENTS

3.4.3 Using PYACTION to set a UDA control 36
3.5 Security implications of PYACTION 37

Chapter 1

Programming in the deck:
UDQ

UDQ and ACTIONX are two keywords which offer a sort of programming in the
input deck. UDQ is an acronym for User Defined Quantity, and the essence of
the UDQ keyword is the ability to define arithmetic expressions based on the
result vectors of the ongoing simulation. The quantites evaluated with UDQ

can then be output as summary variables, and they can be used as controls
in keywords like WCONPROD and GCONINJE. When used as controls the UDQ

variables are called User Defined Arguments (UDA).

For both the UDQ and ACTIONX keywords evaluating an arithmetic expres-
sion based on the current results of the ongoing simulation is an important
part of the concept, and they are often referenced in pair as UDQ/ACTIONX,
this is slightly misleading as the two are fully independent and share very lit-
tle both as concepts in flow and in the C++ implementation. The ACTIONX

keyword is described in chapter 2.

The UDQ keyword is also documented in section 12.3.233 in the flow

reference manual.

1.1 Defining a new UDQ keyword

New UDQ variables are defined with the UDQ keyword in the SCHEDULE section.
The UDQ keyword is a sort of a super keyword with four additional subcom-
mands: DEFINE, ASSIGN, UNIT and UPDATE. The DEFINE subcommand is the
most important command, that is used to define an arithmetic expression
for a UDQ variable, which is evaluated at the end of every simulator time step.
ASSIGN is used to define a UDQ variable with a constant numerical value, in
addition the ASSIGN subcommand is often used as a “forward reference” to
enable using a UDQ keyword in another DEFINE expression. The UNIT com-
mand is used to assign a unit string to a UDQ variable, see section 1.5 for
more details about UDQ variables and units. The UPDATE ON and UPDATE

5

6 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

OFF commands can be used to switch updating of UDQ variables on and off.
The UDQ variables are created in mode ON.

All UDQ keywords must have the letter U as their second character, the
first character should be ’F’, ’G’ or ’W’ to indicate whether this is a field,
group or well quantity1.

The simplest way to define a UDQ is just using the ASSIGN subcommand
of the UDQ keyword:

UDQ

ASSIGN FUVAR1 123 /

ASSIGN FUVAR2 456 /

/

This way we will assign to variables FUVAR1 and FUVAR2 with values 123 and
456 respectively. These values can output to the summary file, be used as
control values in a control keyword like WELTARG and be used to recursively
define another UDQ keyword.

The more interesting UDQ subcommand is DEFINE which is used to define
an arithmetic expression for a UDQ variable, the arithmetic expression will be
evaluated at the end of every timestep. The expressions are built from the
normal arithmetic operators +,-,*,/, a predefined set of available functions
(see 1.3) and results from the ongoing simulation.

In the example below we create UDQ variables FUWCT1 and FUWCT2 as user
defined field water cut, one based on the summary variables FWPR and FOPR

and one based on summing WOPR and WWPR over all wells

UDQ

DEFINE FUWCT1 FWPR/(FWPR + FOPR) /

DEFINE FUWCT2 SUM(WWPR)/(SUM(WWPR) + SUM(WOPR)) /

/

A UDQ variable can be redefined during the simulation, and also change
from constant ASSIGN to variable DEFINE. Observe that UDQ values are always
evaluated in order of occurence in the input deck. For instance for this input

UDQ

ASSIGN FU1 100 /

DEFINE FU2 FU1 + FOPR /

DEFINE FU1 FWPR /

/

the evaluation order will be {FU1, FU2}2. ASSIGN statements take effect
at input time, making the newly defined symbol immediately available for

1In Eclipse also the characters ’S’, ’C’, ’A’ and ’B’ are used to denote segment, con-
nection aquifer and block variables respectively. None of these are supported in flow.

2Maintaining the input order and whether a certain UDQ symbol is now a ASSIGN or
DEFINE keyword is also very important for the restart code.

1.2. DIFFERENT TYPES OF UDQ - FIELD, GROUP AND WELL 7

reuse in a subsequent defintion. This is utilized in the UDQ keyword above
where the symbol FU1 is referenced in the defintion of FU2. As used in this
example the ASSIGN FU1 100 can be seen as a forward reference. When we
have completed the first timestep and it is time to evalute the UDQ expressions
they will be evaluated in order of first appearance, i.e. {FU1, FU2}. At this
stage the active definition of FU1 is FU1 = FWPR, i.e. the value 100 from the
initial definition FU1 = 100 is never actually used.

1.2 Different types of UDQ - field, group and well

The UDQ keywords can be of different types, flow supports field, well and
group keywords3. The field keywords are scalar, whereas the well and group
keywords are sets with values for every well/group.

The type of a UDQ keyword is inferred from the name in the same manner
as the summary keywords, i.e. for this UDQ keyword

UDQ

ASSIGN FU1 100 /

ASSIGN WU1 200 /

ASSIGN GU1 300 /

/

we will define one scalar keyword FU1, one well set WU1 and one group
set GU1. The well sets will have one slot for each well in the model, it is
not possible to create a well set with only a subset of wells, but the well
set can have undefined value for a subset of wells. The set maintains a
is defined() status for each element and most operations only apply to
the defined elements4.

As indicated with ASSIGN WU1 200 you can assign a scalar value to a set
keyword, then all elements in the set will have the same value. Assuming
we have a model with wells OP1, OP2, WI and GI the WU1 will look like

WU1 = {"OP1": 100, "OP2": 100, "WI": 100, "GI": 100}.

When defining a well UDQ it is natural to refer to well summary variables,
in the example below we define WUBHP which is the bottom hole pressure
for each well, WUOPR1 which is the oil production rate for a subset of wells
and WUOPR2 which is the oil production rate for well OP1 broadcasted to all
wells.

UDQ

DEFINE WUBHP WBHP /

3Eclipse also supports connection, segment and aquifer variables.
4The C++ implementation of the UDQ value set is the equivalent of

std::map<std::string, std::optional<double>>.

8 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

DEFINE WUOPR1 WOPR ’OP*’ /

DEFINE WUOPR2 WOPR OP1 /

/

After evaluation these UDQ values will be5:

WUBHP = {"OP1": 20, "OP2": 30, "WI": 10, "GI": 15}

WUOPR1 = {"OP1": 13, "OP2": 17, "WI": [], "GI": []}

WUOPR2 = {"OP1": 13, "OP2": 13, "WI": 13, "GI": 13}

Observe how well variables like WBHP and WOPR can be qualified with a well-
name pattern. If no wellname is supplied the expression will be evaluated
for all wells, as for WUBHP, for WUOPR1 the pattern ’OP*’ will select wells
{OP1, OP2} and leave the injectors {WI, GI} undefined. For WUOPR2 the
well pattern ’OP1’ specifies a well completely, i.e. this will be evaluated as a
scalar, and then the scalar value WOPR:OP1 == 13 is broadcasted to all the
wells in WUOPR2.

UDQ sets with different sets of defined wells can be combined, in most
cases the operations will be applied to the intersection of all defined wells,
consider for example:

UDQ

DEFINE WUBHP WBHP /

DEFINE WUTHP WTHP OP* /

DEFINE WUPDIFF WUBHP - WUTHP

/

When these UDQ statements are evaluated we will get:

WUBHP = {"OP1": 20, "OP2": 30, "WI": 10, "GI": 15}

WUTHP = {"OP1": 13, "OP2": 17, "WI": [], "GI": []}

WUPDIFF = {"OP1": 7, "OP2": 13, "WI": [], "GI": []}

As we see the undefined property for wells GI and WI in WUTHP is contagious
when the two expressions are combined with WUPDIFF = WUBHP - WUTHP,
see however section 1.3.4 for a collection of functions which operate on the
union of values.

When an undefined variable is output to the summary file it will get a
value given as item 3 of the UDQPARAM keyword. Summary output is the
only point where the undefined value can be dereferenced, the numerical
value given in UDQPARAM will not be available either for UDQ nor ACTIONX

evaluations.

5The numerical values are arbitrary, just to illustrate that they are defined, in contrast
to the [] which is used to illustrate an undefined value.

1.3. FUNCTIONS AVAILABLE IN UDQ DEFINTIONS 9

1.3 Functions available in UDQ defintions

flow supports all the UDQ functions available in Eclipse, for the future it
would be a quite simple C++ task to extend the list of available functions,
although that will affect Eclipse compatibility.

1.3.1 Ordinary binary functions

The UDQ framework supports all the ordinary arithmetic operators +,-,*,/
and ˆ and the comparison operators >,≥, <,≤, 6=,==. For all of these
operations sets and scalars can be combined freely. When combining a
scalar and a set the scalar will be promoted to a set with all values equal,
i.e. for

UDQ

ASSIGN WULIMIT 100 /

/

the numerical value 100 will be broadcasted to all wells:

WULIMIT = {"OP1": 100, "OP2": 100, "WI": 100, "GI": 100}.

In the case of set arguments the operations are only applied to the union
of values which are defined in both argument sets. The comparison opera-
tors produce numerical 0 or 1 depending on the result of the comparison,
the result from a comparison operation can be used numerically in further
computations. In the following example FUWCNT will be the number of wells
producing with oil production rate above 10006.

UDQ

DEFINE FUWCNT SUM(WOPR > 1000) /

/

1.3.2 Functions over a set returning a scalar

The UDQ framework has several functions which iterate over all the defined
members of a set and return a scalar. In the example

UDQ

DEFINE FU1 SUM(WOPR ’OP*’) /

/

The scalar variable FU1 will be equal to the sum of oil production rates for
all wells matching the pattern OP*, the wells with a name not matching OP*

will not contribute to the sum. The complete list of functions iterating over
a set and returning a scalar are:

6Remember: 1000 has the units of the deck, i.e. stb/day in FIELD units and m3/day
in metric units.

10 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

SUM Sum all defined elements in the argument set and return a scalar.

AVEA The arithmetic average of the elements in the set.

AVEG The geometric average of the elements in the set.

AVEH The harmonic average of the elements in the set.

MAX The maximum element in the set.

MIN The minimum element in the set.

NORM1 The L1 norm of the elements in the set.

NORM2 The L2 norm of the elements in the set.

NORMI The L∞ norm of the elements in the set.

PROD The product of all the elements in the set.

1.3.3 Elemental functions

There is a family of functions which take a vector or scalar as argument, run
through all the elements in the argument and return a result of the same
shape as the argument, where a function has been applied to all the defined
elements. Assume that the WU1 has the following value:

WU1 = {"OP1": -2, "OP2": -1, "WI": 1, "GI": []},

then DEFINE WUABS ABS(WU1) will give

WUABS = {"OP1": 2, "OP2": 1, "WI": 1, "GI": []}.

The available elemental functions of this kind come in different cate-
gories:

Mathematical functions

EXP Return a new set where all defined elements have been exponentiated.

ABS Return a new set with the absolute value of all elements.

LN Return a new set with the natural logarithm of all elements.

LOG Return a new set with log10 of all elements.

NINT Return a new set where all elements have been converted to the
nearest integer.

1.3. FUNCTIONS AVAILABLE IN UDQ DEFINTIONS 11

Sorting functions

The UDQ functionality supports functions SORTA and SORTD to sort a set in
ascending or descending order respectively. Observe that these functions do
not sort the sets in place - the udqset does not have any notion of ordering,
rather they create a permutation set with values 1,2,3, ... The following
combination of UDQ and ACTIONX will use the SORTD function to close the
two wells with the highest watercut:

UDQ

DEFINE WUWCTS SORTD(WWCT OP*) /

/

assuming the WWCT looks like

WWCT = {"OP1": 0.5, "OP2": 0.2, "OP3": 0.1, "OP4":0.7, "WI": 0, "GI": 0}

then the WUWCTS set will look like

WUWCTS = {"OP1": 2, "OP2": 3, "OP3": 4, "OP4":1 "WI": [], "GI": []}

When this is combined with the ACTIONX(see chapter 2)

ACTIONX

CW /

WUWCTS <= 2 /

/

WELOPEN

’?’ ’CLOSE’ /

/

ENDACTIO

the two wells with highest watercut will be selected in the WUWCTS <= 2

statement and that will be expanded to {OP4, OP1} by the ’?’ expression
in the WELOPEN keyword.

Random functions

The UDQ machinery has functionality to sample random numbers, there are
one set of random number functions which are seeded deterministically by
item 1 of UDQPARAMS and an alternative set which is seeded by the clock.
The random number functions take a UDQ variable as argument, that is only
to ensure that the shape of the result value is correct.

RANDN Random numbers from distribution N(0, 1) seeded deterministi-
cally by item 1 in UDQPARAMS.

12 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

RANDU Random numbers from distribution U(−1, 1) seeded determinis-
tically by item 1 in UDQPARAMS.

RRNDN Random numbers from distribution N(0, 1) seeded by the clock.

RRNDU Random numbers from distribution U(−1, 1) seeded by the clock.

Assuming the argument vector WU1 looks like

WU1 = {"OP1": -2, "OP2": [], "WI": 1, "GI": []},

the result of DEFINE WURAND RANDU(WU1) could be like

WURAND = {"OP1": 0.576, "OP2": [], "WI": -0.132, "GI": []}.

Work with defined status

The functions DEF, UNDEF and IDV can be used to inspect the defined/not
defined status of the elements in a UDQ set.

DEF Return a set with value 1 for all defined elements.

UNDEF Return a set with value 1 for all undefined elements.

IDV Return a set with value 1 for all defined elements and value 0 for all
undefined elements.

Assuming the input argument

WU1 = {"OP1": -2, "OP2": [], "WI": 1, "GI": []},

the UDQ assignments

UDQ

DEFINE WUDEF DEF(WU1) /

DEFINE WUUNDEF UNDEF(WU1) /

DEFINE WUIDV IDV(WU1) /

/

will produce:

WUDEF = {"OP1": 1, "OP2": [], "WI": 1, "GI": []},

WUUNDEF = {"OP1": [], "OP2": 1, "WI": [], "GI": 1},

WUIDV = {"OP1": 1, "OP2": 0, "WI": 1, "GI": 0},

1.4. USED AS A CONTROL: UDA 13

1.3.4 Union functions

There are a list of functions Uxxx which operate on the union of the values
found in the two sets, i.e. a result is assigned if at at least one set has defined
value for this well/group.

UADD Will add the items from the two sets.

UMUL Will multiply the items from the two sets.

UMAX The maximum value from the two sets.

UMIN The minumum value from the two sets.

In the case where only one of the sets has a defined value the operation will
be performed as if the function Uxxx is the identity function.

As an example consider the two sets:

WU1 = {"OP1": 1, "OP2": [], "WI": 2, "GI": []},

WU2 = {"OP1": 6, "OP2": 5, "WI": [], "GI": []},

and the UDQ expression DEFINE WUUADD WU1 UADD WU2, then the result-
ing set WUUADD will be

WUUADD = {"OP1": 7, "OP2": 5, "WI": 2, "GI": []}.

This in contrast to a normal + which only operates on the intersection of
the two sets, only well OP1 would have a defined value in this case.

1.4 Used as a control: UDA

Probably one of the most important uses of the UDQ functionality is the
ability to use a UDQ as control in e.g. the WCONINJE keyword. In the example
below we calculate the produced liquid volume from a group of wells and
use that as injection target for a water injector:

UDQ

DEFINE FULPR (WOPR P* + WWPR P*) * 1.25 /

/

...

...

WCONINJE

WI ’WATER’ ’OPEN’ ’RATE’ ’FULPR’ /

/

14 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

In the following insane example we distribute the current oil production
rate randomly among the producers and use that as target for the next
timestep - do not try this at home:

UDQ

-- Create a 0 / 1 mask with 0 for injectors and 1 for producers.

DEFINE WUPROD WOPR > 0 /

-- Create a vector of random numbers [0,1] for all producers

DEFINE WURAND 0.5 * (RANDU(WUPROD) + 1) * WUPROD /

-- Create a vector where all producers get a random fraction of

-- the current total oil production rate

DEFINE WUOPR FOPR * WURAND / SUM(WURAND) /

/

-- Need to have a well list or similar to select all producers for

-- the WCONPROD keyword.

WLIST

’P’ ’ADD’ /

WCONPROD

’*P’ ’OPEN’ ’ORAT’ ’WUOPR’ /

/

One point about this example is that the UDQ variable WUOPR which is used as
as control in the WCONPROD is a well set, the lookup machinery will automat-
ically use the correct well index when assigning control value to a particular
well.

From an implementation point of view the UDA functionality creates a
significant complexity, because the actual rate to use in the simulation must
be evaluated just in time.

1.5 UDQ units

The UDQ subcommand UNIT can be used to assign a string which is used as
output unit when the UDQ variable is output to the summary file. This is
only a string and does not induce any unit conversion. All UDQ evaluations
are in terms of the corre deck units - irrespective of the UNIT subcommand.
Consider the following

RUNSPEC

FIELD

1.6. IMPLEMENTATION DETAILS 15

...

...

SCHEDULE

UDQ

DEFINE WUI WWIR - 100 /

/

1. The simulation runs in SI units; hence the water injection rate is cal-
culated in m3/s.

2. As part of the summary evaluation the SummaryState will contain the
water injection rate converted to field units.

3. The UDQ variable WUI is evaluated as the water injection rate from
SummaryState subtracted numerical value 100, it is solely the users
responsability that the numerical value 100 represents water injection
rate in field units.

Observe that the units are complicated, and non intuitive for UDA val-
ues. The UDA evaluation is based on the SummaryState class which is in deck
units, the controls determined by UDA evaluation must therefor be converted
to SI units just when it is passed to the simulator. The initial design ambi-
tion was to block the deck units at the IO boundary, keeping the internals
fully in SI. The UDA concept is the exception which manages to inject deck
units quite far into the code.

1.6 Implementation details

The significant part of the UDQ implementation is in classes located in
opm/input/eclipse/Schedule/UDQ, in addition the restart output of UDQ/UDA
values is in opm/output/eclipse/AggregateUDQData.cpp. Finally the UDQ

parser makes use of the type RawString to treat literal “/” and “*” differ-
ent from ordinary parsing where “/” signifies end of line and “*” is either a
default or part of a multiplier expression.

UDQConfig

The class UDQConfig internalizes the parsing of the UDQ keywords from the
input deck. The UDQConfig instance is time-versioned and managed by the
ScheduleState class. The UDQConfig is immutable while the simulator
is executing. The UDQConfig contains two main classes UDQDefine and
UDQAssign in addition to book-keeping code to keep track of what type of

16 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

expression a UDQ keyword is at the time. A significant part of the book-
keeping is only required to be able to output restart files in Eclipse format.

UDQDefine and UDQASTNode

The UDQDefine manages a parsed UDQ expresssion along with a chunck
of metadata. The parsed UDQ expression is managed in an instance of
UDQASTNode. The UDQASTNode contains a parsed tree representation of the
UDQ input expression. The parsing of UDQ expressions happens at input time,
and for the rest of the simulation the UDQASTnode instances are immutable.

Many scalar UDQ types are defined in the file UDQEenums.hpp and in the
namespace UDQ there are many small utility functions to work with these
enums.

SummaryState

The SummaryState class is not part of the UDQ implementation, but it
is a very important class for the UDQ functionality. At the end of every
timestep the simulator will call the method evalSummary which will call
into opm-common and evaluate all summary variables and store them in a
SummaryState instance7. The SummaryState class manages a set of maps
with well, group and field variables, when evaluating e.g. the WOPR the
results will be stored in a two level map first indexed with keyword WOPR

and then with well name. Afterwards the UDQ layer can fetch values with
SummaryState::get well var(). The values in the SummaryState have
been converted to output units, this is important for the UDA evaluation.

At the end of every timestep the UDQConfig::eval() method is called
to evaluate all the UDQ expressions, the evaluated values will end up in the
active SummaryState instance, i.e. for this UDQ

UDQ

DEFINE FUOPR SUM(WOPR) /

DEFINE WUGWR WGPR / WWPR /

/

we will get SummaryState entries for FUOPR and WUGWR for all wells in the
model. These SummaryState values can then be output to the summary
file, be used when evaluating ACTIONX keywords or to evaluate UDA control
values.

In addition to the SummaryState variable there is an instance of type
UDQState which is updated runtime, the UDQState instance holds on to
the results of UDQ evaluations with more context than SummaryState and

7Observe that during initialization the UDQ expressions are inspected, and we make
sure that all summary variables needed to evaulate UDQ expressions are evaluated in the
Summary evaluation.

1.6. IMPLEMENTATION DETAILS 17

is used to output UDQ and UDA state to the restart files. While evaluating
the simulator will create a UDQContext variable which will manage both the
SummaryState, UDQState and also some UDQ parameters from the RUNSPEC

section. The lifetime of the UDQContext instance is only one UDQ evaluation.
While evaluating the UDQ expressions the results will be instances of

UDQSet which is a small container class which keeps track of well/group
names and whether a value is defined or not. The UDQSet class overrides
the arithmetic operators like UDQSet::operator+() so that expressions like
2 * WOPR ’OP*’ can be easily evaluated in code.

Paralell awareness

The opm-common code where the UDQ functionality is implemented is totally
unaware of parallel execution, so to be certain that this works for a parallel
simulator care must be taken. In flow this is handled as:

1. The Schedule class as a whole is identical on all processes.

2. The state variables UDQState and SummaryState are distributed so
they are equal on all processes before the UDQ evaluation. This com-
munication is performed in the simulator.

The UDQ evaluation is invoked from opm-simulators/ebos/eclgenericwriter.cc

function evalSummary().

18 CHAPTER 1. PROGRAMMING IN THE DECK: UDQ

Chapter 2

Programming in the deck:
ACTIONX

The ACTIONX keyword is the most direct way to program in the deck. The
ACTIONX functionality consist of the ACTIONX keyword itself, with some meta-
data and a condition and then a list of keywords which are injected into
the in-memory representation of the SCHEDULE section at the point in time
where the condition evaluates to true. The ACTIONX statement is evaluated
at the end of every timestep, and if it evaluates to true the new keywords
should take effect immediately. The ACTIONX conditions are less sophisti-
cated than the expressions used in UDQ, this implies that a common pattern
is to make involved calculations as UDQ expressions, and then use a simple
test as ACTIONX condition.

The ACTIONX keyword is also documented in section 12.3.6 in the flow

reference manual.

2.1 Structure of the ACTIONX keyword

The ACTIONX keyword itself consist of multiple records. The first record is
metadata with name of the action, the number of times the action can be
triggered and the minimum time elapsed before an action is eligible for a
second run. The subsequent records are conditions, all the conditions are of
the same form

lhs comparison rhs

and subsequent conditions are combined with AND or OR. The lhs is a field,
well or group quantity, in addition you can use time variables DAY, MNTH
and YEAR as left hand side1. As with the UDQ variables the well and group

1Eclipse supports a wider list of summary variables like region, block and aquifer
quantities on both left and right hand side.

19

20 CHAPTER 2. PROGRAMMING IN THE DECK: ACTIONX

variables are sets, and the evaluation status is maintained individually for
each well and group.

The comparison is one of the ordinary mathematical comparison op-
erators >,<,=,!=, <= and >=. Numerical comparisons are done with the
corresponding plain C++ operators, this is in contrast to the UDQ imple-
mentation where an epsilon defined in UDQPARAMS is used in floating point
comparisons.

The rhs is a numerical scalar, or a field, well or group quantity. If your
rhs is a well or group quantity the lhs and rhs must be of the same type.
If you use the symbol MNTH as lhs you can compare with named months,
i.e. the following will trigger on leap days

ACTIONX

LEAP 1000 /

MNTH=FEB AND /

DAY=29 /

/

...

...

ENDACTIO

When there is a well/group quantity as lhs the evaluation status is main-
tained individually for each well/group. The complete condition evaluates
to true if any of the wells/groups satisfy the condition. In the case of wells
the wells matching the condition can subsequently be accessed with well-
name ’?’ in the ACTIONX keywords, this is a quite common pattern to e.g.
close the well with highest watercut.

If there are more conditions they must be joined with a trailing AND or
OR, furthermore conditions can be grouped with paranthesis. The ACTIONX

expressions can only contain the four arithmetic operators +,−, ∗, / and not
mathematical functions like log(), for more advanced expressions the natural
approach is to first define a UDQ and then use the UDQ symbol in the ACTIONX,
this is illustrated in section 1.4. When multiple conditions involving the
same well set are evaluated, the list of matching wells available in ’?’ will
contain all the wells from the final condition, i.e. for

WWCT = {"OP1": 0.25, "OP2": 0.50, "OP3": 0.75}

and the action

ACTIONX

WWCT /

WWCT > 0.33 AND /

WWCT < 0.66 /

/

...

ENDACTIO

2.2. THE STRUCTURE OF THE SCHEDULE IMPLEMENTATION 21

the set of wells available for further use in ’?’ are all the wells matching
the condition WWCT < 0.66 i.e. OP1 and OP2 and not the wells matching
the combined expression 0.33 < WWCT < 0.66. In order to select wells in a
range as attempted here you will have to create an indicator variable with
UDQ first and then select based on that indicator - e.g. something like

UDQ

DEFINE WUCTR (WWCT < 0.66) * (WWCT > 0.33) /

/

ACTIONX

WUCTR /

WUCTR = 1 /

/

...

ENDACTIO

The ACTIONX implementation is located in opm/input/eclipse/Schedule/Action

and all the classes are in namespace Action::. As with the UDQ the input
parser needs some special case to handle ’/’ and ’*’ as division operator and
multiplier respectively, but that is the only code shared between the UDQ

and the ACTIONX implementation2.

The condition part of the ACTIONX keyword is internalized while the
SCHEDULE section is parsed, the final product is maintained in a class Action::ActionX
which has a eval() method waiting to be called. The keywords in the
ACTIONX block are stored in the Action::ActionX keyword for future use.
All of the ACTIONX keywords are stored in a container Action::Actions

which will eventually manage the book keeping of which actions are eligible
for evaluation.

2.2 The structure of the Schedule implementation

flow internalizes all keywords from the input deck and passes fully baked
datastructures to the simulator, whereas our impression is that Eclipse

works more like a reservoir model interepreter, executing one keywords at
a time. Mostly the flow approach has worked out well, however for the
ACTIONX functionality the difference in execution model is quite acute, and
the nature of the ACTIONX keyword has had quite strong influence on the
final Schedule implementation. Although not required for use of ACTIONX it

2It might be possible to share more code between the two, in particular both have an
internal recursive descent parser, but both UDQ and ACTIONX have so much “personality”
that at least initially separate implementations was the simplest.

22 CHAPTER 2. PROGRAMMING IN THE DECK: ACTIONX

is valuable to understand how the ACTIONX functionality has influenced the
design of the Schedule class, that way you will hopefully better understand
problems or bugs which might arise in the future.

At the very first pass the SCHEDULE section is split in blocks, with one
block for each report step. The blocks are implemented with the class
ScheduleBlock. Each block has a starting time and a list of keywords,
the keywords are maintained in the input format DeckKeyword. Then the
entire SCHEDULE section is internalized in the class ScheduleDeck which es-
sentially contains a list of ScheduleBlock instances. Consider the SCHEDULE
section

START

1 ’JAN’ 2020 /

...

...

SCHEDULE

WELSPECS

’PROD’’G1’10 10 8400 ’OIL’ /

’INJ’’G1’1 1 8335 ’GAS’ /

/

COMPDAT

’PROD’10 10 3 3 ’OPEN’1* 1* 0.5 /

’INJ’1 1 1 1 ’OPEN’1* 1* 0.5 /

/

-- End of block 0

DATES

1 ’FEB’ 2020 /

/

WCONPROD

’PROD’ ’OPEN’ ’ORAT’ 20000 4* 1000 /

/

WCONINJE

’INJ’’GAS’’OPEN’’RATE’100000 1* 9014 /

/

-- End of block 1

2.2. THE STRUCTURE OF THE SCHEDULE IMPLEMENTATION 23

DATES

1 ’MAR’ 2020 /

/

-- End of block 2

END

When this is internalized we get a ScheduleDeck instance with three
ScheduleBlock values:

ScheduleDeck sched_deck = [

ScheduleBlock {

start = "2020-01-01",

keywords = ["WELSPECS","COMPDAT"]

},

ScheduleBlock {

start = "2020-02-01",

keywords = ["WCONPROD","WCONINJE"]

},

ScheduleBlock {

start = "2020-03-01",

keywords = []

}

]

The Schedule class has a ScheduleDeck member. The processed content
of the Schedule class is managed in vector of ScheduleState instances,
where one ScheduleState represents the complete dynamic input state at
a particular report step. The processed SCHEDULE code is created with the
method

Schedule::iterateScheduleSection().

When Schedule::iterateScheduleSection(report step) is called it
starts by clearing the vector of ScheduleState instances from report step

to the end of the simulation, and then recreates those by treating the
ScheduleBlock. The advantage of this approach is that the Schedule::iterateScheduleSection(report step)

method is idempotent - it can be called repeatedly, from an arbitrary point
in the timeseries.

The implementation of the ACTIONX functionality is just to append the
ACTIONX keywords in the ScheduleBlock instance corresponding to the cur-
rent report step and then rerun the Schedule::iterateScheduleSection()
from this report step.

24 CHAPTER 2. PROGRAMMING IN THE DECK: ACTIONX

2.3 Forward references of wells and groups

When a well or group is defined as an ACTIONX keyword and then uncondi-
tionally referenced in the deck we get a challenge at the first pass through
the SCHEDULE section. In the example below a new well W1 is defined with
the WELSPECS keyword when the action NEW WELL evaluates to true. At 1.st
of January 2025 the well W1 is opened with the WCONPROD keyword. The
engineer making this model assumes that the NEW WELL action will evaluate
to true sometime before 1.st of January 2025, and thereby ensure that the
well is fully defined when it is eventually opened with WCONPROD:

ACTIONX

’NEW_WELL/

WWCT OPX > 0.75 /

/

WELSPECS

’W1’ ’OP’ 1 1 3.33 ’OIL’ 7*/

/

ENDACTIO

TSTEP

10*30 /

DATES

1 ’JAN’ 2025 /

/

WCONPROD

’W1’ ’OPEN’ ’ORAT’ 0.000 0.000 0.000 5* /

/

TSTEP

10*30 /

For flow this creates problems because the entire SCHEDULE section is
parsed when the simulator starts, and at first pass the well W1 is unknown
in the WCONPROD keyword. This is “solved” in the following way:

1. At first pass we inspect the keywords inside the ACTIONX block and
if we discover WELSPECS we store the name of the well which will be
defined at a later stage through ACTIONX.

2.4. TO ENABLE A NEW KEYWORD FOR ACTIONX 25

2. When we parse further on as part of the first pass and said well is
referenced e.g. in a WCONPROD keyword, we verify that the well will
eventually appear via ACTIONX - we issue a warning and ignore the
well in the WCONPROD keyword3.

3. When the ACTIONX evaluates to true the well will be properly defined,
and when reiterating over the Schedule keywords the WCONPROD key-
word will now be properly internalized. If the ACTIONX never evaluates
to true the WCONPROD keyword will never be applied, and the warning
from point 2 will be the only trace of this well.

It should be mentioned that the functionality with forward referencing of
well names is quite new4, there might be well keywords in the SCHEDULE

section where the implementation is not yet prepared for this. Further-
more the forward referencing is not at all implemented for groups. The
relevant data structure is the member Action::WGNames action wgnames

in the Schedule class.

2.4 To enable a new keyword for ACTIONX

The keywords must be explicitly enabled to be available in an ACTIONX block,
and enabling a new keyword requires recompiling flow. The keywords avail-
able as ACTIONX keywords are listed in the static method ActionX::valid keyword()

in opm/input/eclipse/Schedule/Action/ActionX.cpp. In principle it should
just be to add the keyword to the ActionX::valid keyword() method and
rebuild flow, but experience has unfortunately shown that problems of var-
ious kinds have had a tendency to pop up when new keywords are tried
out as ACTIONX keywords. Most commonly the problems have been in the
interaction between the Schedule class in opm-common and the simulator
- things have a tendency to go out of sync.

2.5 Running ACTIONX during simulation

The first part of the ACTIONX treatment is parsing the keyword and con-
ditions and assemble a syntax tree which can be used to evaluate the con-
ditions. This parsing takes place when the SCHEDULE section is parsed for
the first time. This takes place fully within the realms of the opm-common
codebase, and is quite mature.

When the simulation actually runs the ACTIONX behavior consists of three
distinct parts, taking place in the simulator, in opm-common and again in
the simulator. The simulator will manage an instance of Action::State

3If the well is not registered as “will appear through ACTIONX” there will be a runtime
error with unknown well name when parsing WCONPROD.

4In January 2022

26 CHAPTER 2. PROGRAMMING IN THE DECK: ACTIONX

which will hold on to the time of last run and the latest results for the
various actions.

2.5.1 Prepare and evaluate

As with UDQ the SummaryState instance is the most important variable to
provide context to the ACTIONX evaluation, i.e. the SummaryState variable
must be evaluated before ACTIONX. In addition the UDQ variables must be
evaluated and available in the SummaryState instance before we invoke the
ACTIONX functionality.

The evaluation of actions is called from the method applyActions() in
eclproblem.hh. The method will evaluate which actions are eligible for run-
ning by inspecting the Action::Actions variable and call the ActionX::eval()
method.

2.5.2 Recreate Schedule

When an ACTIONX has evaluated to true the simulator will call into the opm-
common method Schedule::applyAction(report step). That function
will add the keywords from the ACTIONX keyword to the ScheduleBlock for
the correct report step, and then reiterate through the SCHEDULE section to
the end of the simulation.

This reiterate process will recreate all internal members in the Schedule
class, i.e. if the simulator was holding on to a reference to an internal
Schedule datastructure that will be invalidated.

While recreating the Schedule instance there is some book keeping as
to which datastructures need to be recalculated in the simulator as a conse-
quence of the ACTIONX. That information is maintained in the data structure
Action::SimulatorUpdate which is returned back to the simulator.

2.5.3 Updating simulator data structures

The ACTIONX implementation is in the module opm-common, whereas when
the simulation is proceeding it is the simulator code which is clearly in
control. If an action has evaluated to true and new keywords are injected
in the Schedule object the complete simulator state is updated. This is
complex, and many of the bugs in ACTIONX functionality have been in the
interaction between the simulator and opm-common, in particular when an
action has evaluated to true.

An assumption permeating the simulator code is that changes to the
well and group configuration only take place at report steps, and in between
those the simulator “owns” the well and group data. Unfortunately this is
no longer the case when ACTIONX is active, and depending on the keywords
in the ACTIONX block we need to update the simulator data structures after
ACTIONX has been evaluated to true. Some details of what is currently

2.6. PROBLEMS IN PARALLEL 27

updated is decsribed below. This update mechanism will probably need to
be continously updated in the future.

The simulator code makes copies of many of the objects like wells and
connections from the Schedule class, and also assembles many simulator
specific data structures which to a large extent consist of extracts of infor-
mation from the internals of the Schedule object. Some of the interaction
between the simulator and the input layer could probably be simplified if
the simulator would call the Schedule object when e.g. a well or connection
is needed, instead of storing references or copies to the Schedule objects
internally.

There are currently three categories of changes that can take place due
to ACTIONX:

General changes in well status

When there is well related keyword in the ACTIONX block - e.g. WELOPEN to
open or close a well or WCONPROD to adjust rates, the simulator is required
update it’s internal data structures with the updated input information.
This will be communicated by flagging all the wells which need an update in
the Action::SimulatorUpdate instance which is passed from the simulator.

Changes in geo properties

The grid keywords are in general not permitted in the SCHEDULE section,
however there are a few geo multipliers like MULTZ and MULTFLT which
are allowed in the SCHEDULE section, and thereby also in ACTIONX. If one
of these keywords are encountered in the ACTIONX block we set the flag
Action::SimulatorUpdate::tran update = true to encourage the simu-
lator to recalculate the transmissibilities.

WELPI

The WELPI keyword is quite complex from the outset, when it is included
as an ACTIONX keyword it gets even more complicated. In order to support
WELPI in ACTIONX the simulator needs to inspect the ACTIONX keywords be-
fore invoking them, and if WELPI is included the PI values must be assembled
from the simulator and passed to the Schedule::applyAction(). This is
implemented and works, but it is complex and the special treatment in order
to support the combination WELPI + ACTIONX is quite considerable.

2.6 Problems in parallel

The operation environment for ACTIONX is quite similar to UDQ when it comes
to parallel behavior - see section 1.6, in addition we need to be aware of

28 CHAPTER 2. PROGRAMMING IN THE DECK: ACTIONX

parallel challenges after the ACTIONX has completed. If the ACTIONX keyword
changes the well structure there will be problems with with the parallel well
distribution in the simulator. As of Januarry 2022 this will fail undetected.

2.7 ACTIONX restart output

As with the UDQ keyword some of the structure and complexity of the
ACTIONX datastructures are there primarily to enable Eclipse compatible
restart. Regarding restart of ACTIONX related data:

1. The restart output contains the result of parsing an ACTIONX condition
in an intermediate representation which has been reverse engineered,
this is complex and might not be 100% correct.

2. When restarting flow from an Eclipse formatted restart file the
ACTIONX conditions are reparsed based on string data in the restart
file and the intermediate representation mentioned in point 1 is not
utilised.

Chapter 3

Programming in the deck:
PYACTION

The PYACTION keyword is a flow specific keyword which allows for Python
programming in the SCHEDULE section. The PYACTION keyword is inspired
by the ACTIONX keyword, but instead of a .DATA formatted condition you
are allowed to implement the condition with a general Python script. The
ACTIONX keywords are very clearly separated in a condition part and an
action part in the form of a list of keywords which are effectively injected in
the SCHEDULE section when the condition evaluates to true. This is not so
for PYACTION where there is only one Python script which can both evaluate
conditions and apply changes. In principle the script can run arbitrary code,
but due to the complexity of the SCHEDULE datamodel the “current best”
way to actually change the course of the simulation is through the use of an
additional dummy ACTIONX keyword.

In order to enable the PYACTION keyword flow must be compiled with the
cmake switches -DOPM ENABLE EMBEDDED PYTHON=ON and -DOPM ENABLE PYTHON=ON,
the default is to build with these switches set to OFF. Before you enable
PYACTION in your flow installation please read carefully through section 3.5
for security implications of PYACTION.

3.1 Python - wrapping and embedding

Python is present in the flow codebase in two different ways. For many
of the classes in the flow codebase - in particular in opm-common, there
are Python wrappers available. That means that you can invoke the C++
functionality in flow classes from Python - e.g. this Python script can be
used to load a deck and print all the keywords:

import sys

from opm.io.parser import Parser

29

30 CHAPTER 3. PROGRAMMING IN THE DECK: PYACTION

input_file = sys.argv[1]

parser = Parser()

deck = parser.parse_file(input_file)

for kw in deck:

print(kw.name)

When used this way the Python interpreter is the main program running,
and the flow classes like Opm::Parser are loaded to extend the Python
interpreter. This can also be flipped around, the Python interpreter can be
embedded in the flow executable. When Python is embedded, flow is the
main program running, and with help of the embedded interpreter the flow

program can be extended with Python plugins. The PYACTION keyword can
be perceived as a Python plugin. To really interact with the state of the
flow simulation the plugin needs to utilize the functionality which wraps
the C++ functionality, so for PYACTION both wrapping and embedding is at
play.

Exporting more functionality from C++ to Python in the form of new
and updated wrappers is a quite simple and mechanical process. If you need
a particular functionality which is already available in C++ also in Python it
will probably be a quite limited effort for a developer who is already familiar
with the code.

3.2 The PYACTION keyword

The PYACTION keyword is in the SCHEDULE section like ACTIONX. The first
record is the name of the action and a string identifier for how many times
the action should run, then there is a path to a Python module:

PYACTION

PYTEST ’FIRST_TRUE’ /

’pytest.py’ /

This keyword defines a PYACTION called PYTEST which will run at the end
of every timestep until the first time a true value is returned. In addition
to FIRST TRUE you can choose SINGLE to run exactly once and UNLIMITED

to continue running at the end of every timestep for the entire simulation.
The second record is the path to a file with Python code which will run
when this PYACTION is invoked. The path to the module will be interpreted
relative to the location of the .DATA file.

The python module can be quite arbitrary, but it must contain a function
run with the correct signature:

3.2. THE PYACTION KEYWORD 31

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

print(’Running python code in PYACTION’)

return True

The PYACTION machinery is not as robust as the simulator proper: while
loading the PYACTION keyword flow will check that the Python module con-
tains syntactically valid Python code, and that it contains a run() function,
but it will not check the signature of the run() function. If the signature is
wrong you will get a hard to diagnose runtime error.

When the Python module is loaded it does so in an environment where
the path to the .DATA file has been appended to the Python load path by
manipulating the internal sys.path variable.

3.2.1 The different arguments

The run() function will be called with exactly five arguments which your
implementation can use. These arguments point to datastructures in the
simulator, and is the way to interact with the state of the simulation. The
five arguments are:

ecl state: An instance of the Opm::EclipseState class - this is a repre-
sentation of all static properties in the model, ranging from porosity
to relperm tables. The content of the ecl state is immutable - you
are not allowed to change the static properties at runtime1.

schedule: An instance of the Opm::Schedule class - this is a representa-
tion of all the content from the SCHEDULE section, notably all well
and group information and the timestepping. Being able to change
the SCHEDULE information runtime is certainly one of the main mo-
tivations for this functionality, however due to the complexity of the
Opm::Schedule class (section 2.2) the recommended way to actually
mutate the Opm::Schedule is through the use of a dummy ACTIONX

keyword (section 3.3).

report step: This is an integer for the report step we are currently working
on. Observe that the PYACTION is called for every simulator timestep,
i.e. it will typically be called multiple times with the same value for
the report step argument.

summary state: An instance of the Opm::SummaryState class, this is where
the current summary results of the simulator are stored. The SummaryState
class has methods to get hold of well, group and general variables

1This could certainly be interesting, but this is beyond the scope of the PYACTION

keyword.

32 CHAPTER 3. PROGRAMMING IN THE DECK: PYACTION

Print all well names

for well in summary_state.wells:

print(well)

Assign all group names to the variable group_names

group_names = summary_state.groups

Sum the oil rate from all wells.

sum_wopr = 0

for well in summary_state.wells:

sum_wopr += summary_state.well_var(well, ’WOPR’)

Directly fetch the FOPR from the summary_state

fopr = summary_state[’FOPR’]

The summary state variable can also be updated with the update(),
update well var() and update group var() methods.

actionx callback: The actionx callback is a specialized function which
is used to update the Schedule object by applying the keywords from
a normal ACTIONX keyword. This is described in detail in section 3.3.

3.2.2 Holding state

The PYACTION keywords will often be invoked multiple times, a Python
dictionary state has been injected in the module - that dictionary can be
used to maintain state between invocations. Let us assume we want to detect
when the field oil production starts curving down - i.e. when ∂2

t FOPR < 0,
in order to calculate that we need to keep track of the timesteps and the
FOPR as function of time - this is one possible implementation:

def diff(pair1, pair2):

return (pair1[0] - pair2[0], pair1[1] - pair2[1])

def fopr_diff2(summary_state):

fopr = summary_state.get(’FOPR’)

sim_time = summary_state.get(’TIME’)

if not ’fopr’ in state:

state[’fopr’] = []

fopr_series = state[’fopr’]

fopr_series.append((sim_time, fopr))

if len(fopr_series) < 2:

return None

3.3. CHANGING THE SCHEDULEOBJECT - USING A “NORMAL” ACTIONX33

pair0 = fopr_series[-1]

pair1 = fopr_series[-2]

pair2 = fopr_series[-3]

dt1, df1 = diff(pair0, pair1)

dt2, df2 = diff(pair1, pair2)

return 2*(df1/dt1 - df2/dt2)/(dt1 + dt2)

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

fopr_d2 = fopr_diff2(summary_state)

if not fopr_d2 is None:

if fopr_d2 < 0:

print(’Hmmm - this is going the wrong way’)

else:

print(’All good - sky is the limit!’)

3.3 Changing the Schedule object - using a “nor-
mal” ACTIONX

Before reading this section you should make sure to understand the Schedule
design described in section 2.2. The initial plan when implementing the
PYACTION keyword was to be able to make function calls like

schedule.close_well(w1, report_step)

schedule.set_orat(w2, 1000, report_step)

to close a well and set the oil rate of another well. Unfortunately it proved
very complex to get good semantics for combining such runtime changes with
the keyword based model for SCHEDULE section. The current recommenda-
tion is to apply changes to the SCHEDULE section using callbacks to ACTIONX

keywords from Python code, this is illustrated in the example below2.

The recommended way to achieve this is to create a normal ACTIONX
keyword which is set up to run zero times, and then explicitly invoke that
from the Python run() function. In the example below we create an ACTIONX

CLOSEWELLS which will close all matching wells (the wellname ’?’)

ACTIONX

CLOSEWELLS 0 /

2From a programmers point of view the solution seems very unsatisfactory, but it
works and it plays nicely with the ACTIONX behavior. If/when the underlying Schedule

implementation changes there is nothing per se in the PYACTION design which inhibits use
of a better Schedule api in the future.

34 CHAPTER 3. PROGRAMMING IN THE DECK: PYACTION

/

/

WELOPEN

’?’ ’CLOSE’ /

/

ENDACTIO

The CLOSEWELLS action is set up to run zero times, so the normal ACTIONX
machinery will never run this action3. Then in the Python run function we
go through all the wells and call the CLOSEWELL action to close those with
OPR < 1000:

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

close_wells = []

for well in summary_state.wells:

if summary_state.well_var(well, ’WOPR’) < 1000:

close_wells.append(well)

if close_wells:

actionx_callback(’CLOSEWELLS’, close_wells)

The implementation of this is quite complex with thread of execution go-
ing from C++ to Python, then invoking a callback to C++ which will call
Schedule::iterateScheduleSection(), going back to Python to complete
the run() method before the function pointers pops back to C++ and con-
tinues the simulator execution4.

3.4 Implementing UDQ like behavior

The UDQ keyword has three different purposes - all based on defining complex
quantities from the current state of the simulation:

1. Define a complex quantity to be used in a ACTIONX condition.

2. Define a complex quantity for reporting in the summary file.

3. Define a quantity which can used as a control in UDA.

All of these can be achieved by using the PYACTION keyword, although
for the two latter alternatives you must specify the UDQ keyword in the deck
first, but you can let the PYACTION implementation override the value:

3The CLOSEWELL action has an empty condition, the ACTIONX keywords with empty
condition will always evaluate as false.

4This is documented in some detail as code comments of Schedule::applyPyAction()
in the Schedule.cpp file.

3.4. IMPLEMENTING UDQ LIKE BEHAVIOR 35

-- Observe that this UDQ will be assigned from a PYACTION keyword,

-- the value used in the ASSIGN statement below is pure dummy.

UDQ

ASSIGN WUGOOD 1 /

ASSIGN FUGOOD 1 /

/

3.4.1 Using PYACTION instead of UDQ + ACTIONX

Towards the end of section 2.1 it is demonstrated how UDQ and ACTIONX

can be combined to implement an action in case a complicated condition
applies. As described in section 3.3 the best way to actually invoke changes
on the SCHEDULE section is through the use of a dummy ACTIONX keyword,
but PYACTION is very well suited to evaluate complex conditions. In the
example below we close all wells which have consistently produced less than
1000 m3/day for more than 60 days:

wopr_limit = 1000

time_limit = 60 * 3600 * 24

def init_state(summary_state):

if ’closed_wells’ in state:

return

state[’closed_wells’] = set()

bad_wells = {}

for well in summary_state.wells:

bad_wells[well] = None

state[’bad_wells’] = bad_wells

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

shut_wells = []

init_state(summary_state)

for well in summary_state.wells:

if well in state[’closed_wells’]:

continue

if summary_state.well_var(well, ’WOPR’) < wopr_limit:

elapsed = summary_state.elapsed()

if state[’bad_wells’][well] is None:

state[’bad_wells’][well] = elapsed

else:

bad_time = elapsed - state[’bad_wells’][well]

36 CHAPTER 3. PROGRAMMING IN THE DECK: PYACTION

if bad_time > time_limit:

shut_wells.append(well)

state[’closed_wells’].add(well)

else:

state[’bad_wells’][well] = None

if shut_wells:

actionx_callback(shut_wells)

3.4.2 Using PYACTION to report to the summary file

The important point when using PYACTION to report complex results to
the summary file is just that the summary state argument to the run()

function is writable with updata xxx calls. Assuming dummy UDQ variables
WUGOOD and FUGOOD have been defined as per the example above, we can use
PYACTION to set variable FUGOOD to one for all wells with rate above a limit,
and the FUGOOD variable can be the count of such wells:

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

good_count = 0

opr_limit = 1000

for wname in schedule.well_names():

if summary_state.well_var(wname, ’FOPR’) > opr_limit:

good_count += 1

summary_state.update_well_var(wname, ’WUGOOD’, 1)

else:

summary_state.update_well_var(wname, ’WUGOOD’, 0)

summary_state.update_var(’FUGOOD’, good_count)

3.4.3 Using PYACTION to set a UDA control

Using PYACTION to set UDA controls is quite simple. Again the UDQ keyword
must have been defined with a dummy value in the SCHEDULE section, and the
UDA keyword used in e.g. a WCONDPROD keyword. Then the run() function
can just be used to assign to the UDQ variable. In the example below we use
a UDA to control the oil production rate, and the value is set to the average
value of the producing wells:

-- Define dummy UDQ WUOPR to be used as control in the WCONPROD

-- keyword. The actual value for this UDQ is assigned in a PYACTION

-- keyword

UDQ

ASSIGN WUOPR 0 /

3.5. SECURITY IMPLICATIONS OF PYACTION 37

/

...

...

-- Need to define a well list with all the production wells.

-- This is to ensure that the WCONPROD keyword is only applied

-- to producers.

WLIST

’PROD’ P1 P2 P3 .../

WCONPROD

’*PROD’ ’OPEN’ ’ORAT’ ’WUOPR’ /

/

This can then be combined with the python code:

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

num_prod_wells = 0

for wname in schedule.well_names():

if summary_state.well_var(wname, ’WOPR’) > 0:

num_prod_wells += 1

fopr = summary_state[’FOPR’]

new_rate = fopr / num_prod_wells

for wname in schedule.well_names():

summary_state.update_well_var(wname, ’WUOPR’, new_rate)

3.5 Security implications of PYACTION

The PYACTION keyword allows for execution of arbitrary user supplied Python
code, with the priviliges of the user actually running flow. If you have a
setup where flow runs with a different user account than the person submit-
ting the simulation you should be very careful about enabling the embedded
Python functionality and the PYACTION keyword. As a scary example this
script will wipe your disks:

import shutil

def run(ecl_state, schedule, report_step, summary_state, actionx_callback):

shutil.rmtree(’/’)

If the user running flow has different security credentials than the user
submits the job, this has significant security implications.

