Poroelastic fracturing

T. Kvamsdal^{1,2} E. Fonn² A. M. Kvarving² K. M. Okstad² K. Johannessen²

¹Department of Mathematical Sciences, NTNU

²Applied Mathematics and Cybernetics, SINTEF Digital

Poroelastic fracturing

• • = • • = •

Physical model

< □ > < □ > < □ > < □ > < □ >

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

$\sigma^{ ext{t}}$: total stress

• Fundamental conservation of momentum

$$abla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \boldsymbol{\rho} \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

$\rho:$ total mass density

T. Kvamsdal (NTNU/SINTEF)

A B A A B A

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

\mathbf{f}_{b} : body forces

T. Kvamsdal (NTNU/SINTEF)

• • = • • = •

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{\mathsf{t}} = \boldsymbol{\sigma}^{\mathsf{e}} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

A B A A B A

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha p \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

 $\sigma^{\mathsf{e}} = \sigma(arepsilon)$: effective stress

(日) (四) (日) (日) (日)

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{\mathsf{t}} = \boldsymbol{\sigma}^{\mathsf{e}} + \boldsymbol{\alpha} p \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

 α : Biot's coefficient (typically $\alpha = 1$)

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

p: pressure of fluid in porous material — a primary unknown

T. Kvamsdal (NTNU/SINTEF)

(日) (四) (日) (日) (日)

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha p \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = \boldsymbol{q}_{\rm b}$$

u: displacement vector field — a primary unknown

(日) (四) (日) (日) (日)

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha p \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$lpha
abla \cdot \dot{oldsymbol{u}} + rac{1}{M} \dot{oldsymbol{p}} -
abla \cdot [oldsymbol{\kappa} \cdot (
abla oldsymbol{p} -
ho_{\mathsf{f}} oldsymbol{f}_{\mathsf{b}})] = q_{\mathsf{b}}$$

1/M: specific storage coefficient, a measure of compressibility of fluid

(日) (四) (日) (日) (日)

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{\mathsf{t}} = \boldsymbol{\sigma}^{\mathsf{e}} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$
$$\frac{1}{M} = \frac{\alpha - n}{K_{\rm s}} + \frac{n}{K_{\rm f}}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = q_{\rm b}$$

κ : permeability tensor field

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \boldsymbol{\rho}_{\mathsf{f}} \boldsymbol{f}_{\mathsf{b}})] = q_{\mathsf{b}}$$

$\rho_{\rm f}\!\!:$ fluid density

• Fundamental conservation of momentum

$$\nabla \cdot \boldsymbol{\sigma}^{\mathsf{t}} + \rho \boldsymbol{f}_{\mathsf{b}} = \boldsymbol{0}$$

• Darcy flow: contribution to stress

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{e} + \alpha \boldsymbol{\rho} \boldsymbol{I}$$

• Darcy flow: mass balance equation

$$\alpha \nabla \cdot \dot{\boldsymbol{u}} + \frac{1}{M} \dot{\boldsymbol{p}} - \nabla \cdot [\boldsymbol{\kappa} \cdot (\nabla \boldsymbol{p} - \rho_{\rm f} \boldsymbol{f}_{\rm b})] = \boldsymbol{q}_{\rm b}$$

q_b: fluid sources and sinks

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

System of equations resulting from variational formulation

$$\begin{aligned} \boldsymbol{u}_{i}, \delta \boldsymbol{u}_{i} &\in H^{1}(\Omega)^{d} \\ p_{i}, \delta p_{i} &\in \left\{ p \in L^{2}(\Omega) \mid \int_{\Omega} p = 0 \right\} \\ \begin{pmatrix} \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{u} \\ \boldsymbol{f}_{p} \end{pmatrix} \end{aligned}$$

(日) (四) (日) (日) (日)

System of equations resulting from variational formulation

$$\begin{aligned} \mathbf{u}_{i}, \delta \mathbf{u}_{i} &\in H^{1}(\Omega)^{d} \\ p_{i}, \delta p_{i} &\in \left\{ p \in L^{2}(\Omega) \mid \int_{\Omega} p = 0 \right\} \\ \begin{pmatrix} \mathbf{Q}^{\mathsf{T}} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{p}} \end{pmatrix} + \begin{pmatrix} \mathbf{K} & -\mathbf{Q} \\ \mathbf{P} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{p} \end{pmatrix} \end{aligned}$$

The coupling matrix

$$\boldsymbol{Q}_{ij} = lpha \int_{\Omega}
abla \delta \boldsymbol{u}_j : \boldsymbol{p}_i \boldsymbol{I}$$

T. Kvamsdal (NTNU/SINTEF)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

System of equations resulting from variational formulation

$$\begin{aligned} \mathbf{u}_{i}, \delta \mathbf{u}_{i} &\in H^{1}(\Omega)^{d} \\ p_{i}, \delta p_{i} &\in \left\{ p \in L^{2}(\Omega) \mid \int_{\Omega} p = 0 \right\} \\ \begin{pmatrix} \mathbf{Q}^{\mathsf{T}} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{p}} \end{pmatrix} + \begin{pmatrix} \mathbf{K} & -\mathbf{Q} \\ \mathbf{P} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{p} \end{pmatrix} \end{aligned}$$

The storativity matrix

$$m{S}_{ij} = \int_{\Omega} c \delta p_i p_j$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

System of equations resulting from variational formulation

$$\begin{aligned} \boldsymbol{u}_{i}, \delta \boldsymbol{u}_{i} &\in H^{1}(\Omega)^{d} \\ \boldsymbol{p}_{i}, \delta \boldsymbol{p}_{i} &\in \left\{ \boldsymbol{p} \in L^{2}(\Omega) \mid \int_{\Omega} \boldsymbol{p} = 0 \right\} \\ \begin{pmatrix} \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{u} \\ \boldsymbol{f}_{p} \end{pmatrix} \end{aligned}$$

The permeability matrix

$$oldsymbol{P}_{ij} = \int_{\Omega}
abla \delta oldsymbol{p}_i^{\intercal} oldsymbol{\kappa}
abla oldsymbol{p}_j$$

System of equations resulting from variational formulation

$$\begin{aligned} \mathbf{u}_{i}, \delta \mathbf{u}_{i} &\in H^{1}(\Omega)^{d} \\ p_{i}, \delta p_{i} &\in \left\{ p \in L^{2}(\Omega) \mid \int_{\Omega} p = 0 \right\} \\ \begin{pmatrix} \mathbf{Q}^{\mathsf{T}} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{p}} \end{pmatrix} + \begin{pmatrix} \mathbf{K} & -\mathbf{Q} \\ \mathbf{P} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{p} \end{pmatrix} \end{aligned}$$

The stiffness matrix

$$oldsymbol{\mathcal{K}}_{ij} = \int_{\Omega} oldsymbol{arepsilon}(\delta oldsymbol{u}_i) : oldsymbol{D} oldsymbol{arepsilon}(oldsymbol{u}_j)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

System of equations resulting from variational formulation

$$\begin{aligned} \mathbf{u}_{i}, \delta \mathbf{u}_{i} &\in H^{1}(\Omega)^{d} \\ p_{i}, \delta p_{i} &\in \left\{ p \in L^{2}(\Omega) \mid \int_{\Omega} p = 0 \right\} \\ \left(\mathbf{Q}^{\mathsf{T}} \quad \mathbf{S} \right) \begin{pmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{p}} \end{pmatrix} + \begin{pmatrix} \mathbf{K} & -\mathbf{Q} \\ \mathbf{P} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{p} \end{pmatrix} \end{aligned}$$

Momentum load

$$(\mathbf{f}_{u})_{i} = \int_{\Omega} \delta \mathbf{u}_{i} \cdot \rho \mathbf{f}_{b} + \int_{\Gamma_{n}} \delta \mathbf{u}_{i} \cdot \overline{\mathbf{t}}$$

System of equations resulting from variational formulation

$$\begin{aligned} \mathbf{u}_{i}, \delta \mathbf{u}_{i} &\in H^{1}(\Omega)^{d} \\ p_{i}, \delta p_{i} &\in \left\{ p \in L^{2}(\Omega) \mid \int_{\Omega} p = 0 \right\} \\ \begin{pmatrix} \mathbf{Q}^{\mathsf{T}} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{p}} \end{pmatrix} + \begin{pmatrix} \mathbf{K} & -\mathbf{Q} \\ \mathbf{P} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{u} \\ \mathbf{f}_{p} \end{pmatrix} \end{aligned}$$

Flux load

$$(f_p)_i = \int_{\Omega} \delta p_i q_b$$

• Note that K and f_u are "standard" elasticity system matrices

- This serves as a convenient "plugging point" for substituting different elasticity models in the same Darcy flow interpretation
- E.g. dynamic elasticity

$$\begin{pmatrix} \boldsymbol{M} \\ \boldsymbol{D} \end{pmatrix} \begin{pmatrix} \boldsymbol{\ddot{u}} \\ \boldsymbol{\ddot{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{Q^{\mathsf{T}}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \boldsymbol{\dot{u}} \\ \boldsymbol{\dot{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{\boldsymbol{u}} \\ \boldsymbol{f}_{\boldsymbol{p}} \end{pmatrix}$$

(日) (四) (日) (日) (日)

- Note that K and f_u are "standard" elasticity system matrices
- This serves as a convenient "plugging point" for substituting different elasticity models in the same Darcy flow interpretation
- E.g. dynamic elasticity

$$\begin{pmatrix} \boldsymbol{M} \\ \boldsymbol{D} \end{pmatrix} \begin{pmatrix} \boldsymbol{\ddot{u}} \\ \boldsymbol{\ddot{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{Q^{\mathsf{T}}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \boldsymbol{\dot{u}} \\ \boldsymbol{\dot{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{\boldsymbol{u}} \\ \boldsymbol{f}_{\boldsymbol{p}} \end{pmatrix}$$

(日) (四) (日) (日) (日)

- Note that K and f_u are "standard" elasticity system matrices
- This serves as a convenient "plugging point" for substituting different elasticity models in the same Darcy flow interpretation
- E.g. dynamic elasticity

$$\begin{pmatrix} \boldsymbol{M} \\ \boldsymbol{D} \end{pmatrix} \begin{pmatrix} \ddot{\boldsymbol{u}} \\ \dot{\boldsymbol{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{\boldsymbol{u}} \\ \boldsymbol{f}_{\boldsymbol{p}} \end{pmatrix}$$

A B A A B A

- Note that K and f_u are "standard" elasticity system matrices
- This serves as a convenient "plugging point" for substituting different elasticity models in the same Darcy flow interpretation
- E.g. dynamic elasticity

$$\begin{pmatrix} \boldsymbol{M} \\ \boldsymbol{D} \end{pmatrix} \begin{pmatrix} \boldsymbol{\ddot{u}} \\ \boldsymbol{\ddot{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{Q^{\mathsf{T}}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \boldsymbol{\dot{u}} \\ \boldsymbol{\dot{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{u} \\ \boldsymbol{f}_{p} \end{pmatrix}$$

The mass matrix

$$M_{ij} = \int_{\Omega} \delta \boldsymbol{u}_i \cdot \boldsymbol{u}_j$$

A B K A B K

- Note that K and f_u are "standard" elasticity system matrices
- This serves as a convenient "plugging point" for substituting different elasticity models in the same Darcy flow interpretation
- E.g. dynamic elasticity

$$\begin{pmatrix} \boldsymbol{M} \\ \boldsymbol{D} \end{pmatrix} \begin{pmatrix} \ddot{\boldsymbol{u}} \\ \ddot{\boldsymbol{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{p}} \end{pmatrix} + \begin{pmatrix} \boldsymbol{K} & -\boldsymbol{Q} \\ \boldsymbol{P} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_{\boldsymbol{u}} \\ \boldsymbol{f}_{\boldsymbol{p}} \end{pmatrix}$$

The damping matrix

C = aM + bK

- 4 回 ト 4 ヨ ト 4 ヨ ト

Domain with internal discontinuity

A D N A B N A B N A B N

Energy functional for dynamic brittle fracture

$$\Psi(\boldsymbol{u}, \dot{\boldsymbol{u}}, \Gamma) = \int_{\Omega} \left(\frac{
ho}{2} \dot{\boldsymbol{u}} \cdot \dot{\boldsymbol{u}} - \psi_{\boldsymbol{e}}(\boldsymbol{u})
ight) - \int_{\Gamma} \mathcal{G}_{\boldsymbol{c}}$$

where

- Γ is the unknown crack path
- $\psi_e = \frac{1}{2}\lambda(\operatorname{tr} \varepsilon)^2 + \mu \operatorname{tr}(\varepsilon : \varepsilon)$ is the strain energy density function, λ and μ are the Lamè material parameters, and $\varepsilon(\boldsymbol{u})$ is the 2nd-order strain tensor
- $\mathcal{G}_c\;$ is the fracture energy density

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Phase-field approximation of the discontinuity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Phase-field model

- Resolves individual cracks down to some length scale
- Diffuse interface \Rightarrow no interface tracking

 $\left\{ \begin{array}{ll} c = 1 & \Rightarrow \quad \text{undamaged material} \\ 0 < c < 1 & \Rightarrow \quad \text{damaged material} \\ c = 0 & \Rightarrow \quad \text{cracked material} \end{array} \right.$

- 4 目 ト - 4 日 ト

Energy functional for dynamic brittle fracture

• Approximation of the fracture energy:

$$\int_{\Gamma} \mathcal{G}_{c} \approx \begin{cases} \int_{\Omega} \mathcal{G}_{c} \left(\frac{(1-c)^{2}}{4\ell_{0}} + \ell_{0} |\nabla c|^{2} \right) & 2 \text{nd-order} \\ \int_{\Omega} \mathcal{G}_{c} \left(\frac{(1-c)^{2}}{4\ell_{0}} + \frac{\ell_{0}}{2} |\nabla c|^{2} + \frac{\ell_{0}^{3}}{4} (\nabla^{2} c)^{2} \right) & 4 \text{th-order} \end{cases}$$

where $c \in [0, 1]$ is the phase field parameter, and ℓ_0 is a chosen length scale defining the "thickness" of the damaged material (crack) zone.

• Split of elastic strain energy density into tensile and compressive parts

$$\psi_{e}(\boldsymbol{u}) = g(\boldsymbol{c})\psi^{+}(\boldsymbol{\varepsilon}) + \psi^{-}(\boldsymbol{\varepsilon})$$

where g(c) is a degradation function (typically chosen as c^2), and ψ^+ and ψ^- are tensile and compressive contributions, respectively

< □ > < 同 > < 回 > < 回 > < 回 >

Small strain brittle fracture

Strain tensor:

$$\varepsilon(\boldsymbol{u}) = \frac{1}{2} \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right)$$

• Stress tensor:

$$\boldsymbol{\sigma}(\boldsymbol{u}) = \frac{\partial}{\partial \varepsilon} \psi_{\boldsymbol{e}}(\varepsilon) = g(c) \frac{\partial}{\partial \varepsilon} \psi^{+}(\varepsilon) + \frac{\partial}{\partial \varepsilon} \psi^{-}(\varepsilon)$$

Minimizing Ψ(u, u, Γ) ≈ Ψ(u, u, c) with respect to u and c yields the strong form of the brittle crack problem:

$$\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}) = \rho \boldsymbol{\ddot{u}} \qquad \text{linear momentum}$$

$$\frac{2\ell_0}{\mathcal{G}_c} g'(c) \psi^+ + c - 4\ell_0^2 \nabla^2 c = 1 \qquad \text{phase-field (2nd-order)}$$

$$\frac{2\ell_0}{\mathcal{G}_c} g'(c) \psi^+ + c - 2\ell_0^2 \nabla^2 c + \ell_0^4 \nabla^4 c = 1 \qquad \text{Phase-field (4th-order)}$$
on $\Omega \times]0, T].$

T. Kvamsdal (NTNU/SINTEF)

Strain history field

To ensure that the developed crack does not close again, i.e., $\Gamma(t) \subset \Gamma(t + \Delta t) \quad \forall \Delta t > 0$, the tensile energy density ψ^+ in the phase-field equation is replaced by a history field $\mathcal{H}(\mathbf{x}, t)$, satisfying $\mathcal{H} \ge \psi^+$, $\dot{\mathcal{H}} \ge 0$ and $\dot{\mathcal{H}}(\mathcal{H} - \psi^+) = 0$. Thus

$$\frac{2\ell_0}{\mathcal{G}_c}g'(c)\mathcal{H} + c - 4\ell_0^2\nabla^2 c = 1 \qquad (2\text{nd-order})$$

$$\frac{2\ell_0}{\mathcal{G}_c}g'(c)\mathcal{H} + c - 2\ell_0^2\nabla^2 c + \ell_0^4\nabla^4 c = 1 \qquad (4\text{th-order})$$
Boundary and initial conditions

$$\begin{array}{rcl} u_{\alpha} & = & g_{\alpha} & \text{on} & \partial\Omega_{g_{\alpha}} \times [0, T] & : \text{ Dirichlet condition on } u_{\alpha} \\ \sigma_{\alpha\beta}n_{\beta} & = & h_{\alpha} & \text{on} & \partial\Omega_{h_{\alpha}} \times [0, T] & : \text{ Neumann condition on the} \\ & & \alpha \text{th traction component} \\ \nabla c \cdot \boldsymbol{n} & = & 0 & \text{on} & \Omega \times [0, T] & : \text{ Neumann condition on } c \\ \boldsymbol{u}(\boldsymbol{x}, 0) & = & \boldsymbol{u}_{0}(\boldsymbol{x}) & \forall \quad \boldsymbol{x} \in \Omega & : \text{ Initial condition on displacement} \\ \dot{\boldsymbol{u}}(\boldsymbol{x}, 0) & = & \boldsymbol{v}_{0}(\boldsymbol{x}) & \forall \quad \boldsymbol{x} \in \Omega & : \text{ Initial condition on velocity} \end{array}$$

$$\mathcal{H}(\boldsymbol{x},0) = \mathcal{H}_0(\boldsymbol{x}) \;\; orall \; \boldsymbol{x} \in \Omega \;\;$$
 : Initial strain-history field

A non-zero \mathcal{H}_0 can be used to model pre-existing cracks or other geometric features to be captured by the mesh topology, e.g.

$$\mathcal{H}_0(\boldsymbol{x}) = \left(\frac{1}{c_0} - 1\right) \frac{\mathcal{G}_c}{4\ell_0} \left(1 - \min\left\{\frac{d(\boldsymbol{x}, l)}{\ell_0}, 1\right\}\right)$$

where $d(\mathbf{x}, l)$ denotes the shortest distance from \mathbf{x} to the curve l describing the initial crack geometry, and c_0 is phase-field value in the initial crack.

To establish the tensile (ψ^+) and compressive (ψ^-) contributions of the elastic strain energy, the eigenvalues, λ_{α} , and associated egenvectors, \mathbf{n}_{α} , of the strain tensor $\boldsymbol{\varepsilon}$, are computed such that

$$egin{aligned} oldsymbol{arepsilon} & oldsymbol{arepsilon} & = \sum_lpha \lambda_lpha \, oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha & = oldsymbol{arepsilon}^+ + oldsymbol{arepsilon}^- \ & = \sum_lpha \left< \lambda_lpha
ight> oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha + \sum_lpha (\lambda_lpha - \left<\lambda_lpha
ight>) oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha \end{aligned}$$

Then

$$\psi^{+} = \frac{\lambda}{2} \langle \operatorname{tr} \varepsilon \rangle^{2} + \mu \operatorname{tr}(\varepsilon^{+} : \varepsilon^{+})$$

$$\psi^{-} = \frac{\lambda}{2} (\operatorname{tr} \varepsilon - \langle \operatorname{tr} \varepsilon \rangle)^{2} + \mu \operatorname{tr}(\varepsilon^{-} : \varepsilon^{-})$$

(日) (四) (日) (日) (日)

To establish the tensile (ψ^+) and compressive (ψ^-) contributions of the elastic strain energy, the eigenvalues, λ_{α} , and associated egenvectors, \mathbf{n}_{α} , of the strain tensor $\boldsymbol{\varepsilon}$, are computed such that

$$egin{aligned} arepsilon &= \sum_lpha \lambda_lpha \, oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha &= arepsilon^+ + arepsilon^- \ &= \sum_lpha \left< \lambda_lpha
ight> oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha + \sum_lpha (\lambda_lpha - \left< \lambda_lpha
ight>) oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha \ \end{aligned}$$

Then

$$\psi^{+} = \frac{\lambda}{2} \langle \operatorname{tr} \varepsilon \rangle^{2} + \mu \operatorname{tr}(\varepsilon^{+} : \varepsilon^{+})$$

$$\psi^{-} = \frac{\lambda}{2} (\operatorname{tr} \varepsilon - \langle \operatorname{tr} \varepsilon \rangle)^{2} + \mu \operatorname{tr}(\varepsilon^{-} : \varepsilon^{-})$$

 $\langle x \rangle = 1/2(x + |x|)$, the positive part of x

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To establish the tensile (ψ^+) and compressive (ψ^-) contributions of the elastic strain energy, the eigenvalues, λ_{α} , and associated egenvectors, \mathbf{n}_{α} , of the strain tensor $\boldsymbol{\varepsilon}$, are computed such that

$$\begin{split} \boldsymbol{\varepsilon} &= \sum_{\alpha} \lambda_{\alpha} \, \boldsymbol{n}_{\alpha} \otimes \boldsymbol{n}_{\alpha} = \boldsymbol{\varepsilon}^{+} + \boldsymbol{\varepsilon}^{-} \\ &= \sum_{\alpha} \left\langle \lambda_{\alpha} \right\rangle \, \boldsymbol{n}_{\alpha} \otimes \boldsymbol{n}_{\alpha} + \sum_{\alpha} (\lambda_{\alpha} - \left\langle \lambda_{\alpha} \right\rangle) \, \boldsymbol{n}_{\alpha} \otimes \boldsymbol{n}_{\alpha} \end{split}$$

Then

$$\psi^{+} = \frac{\lambda}{2} \langle \operatorname{tr} \varepsilon \rangle^{2} + \mu \operatorname{tr}(\varepsilon^{+} : \varepsilon^{+})$$

$$\psi^{-} = \frac{\lambda}{2} (\operatorname{tr} \varepsilon - \langle \operatorname{tr} \varepsilon \rangle)^{2} + \mu \operatorname{tr}(\varepsilon^{-} : \varepsilon^{-})$$

$arepsilon^+$: the tensile strain tensor

< □ > < 同 > < 回 > < 回 > < 回 >

To establish the tensile (ψ^+) and compressive (ψ^-) contributions of the elastic strain energy, the eigenvalues, λ_{α} , and associated egenvectors, \mathbf{n}_{α} , of the strain tensor $\boldsymbol{\varepsilon}$, are computed such that

$$\begin{split} \boldsymbol{\varepsilon} &= \sum_{\alpha} \lambda_{\alpha} \, \boldsymbol{n}_{\alpha} \otimes \boldsymbol{n}_{\alpha} = \boldsymbol{\varepsilon}^{+} + \boldsymbol{\varepsilon}^{-} \\ &= \sum_{\alpha} \left\langle \lambda_{\alpha} \right\rangle \boldsymbol{n}_{\alpha} \otimes \boldsymbol{n}_{\alpha} + \sum_{\alpha} (\lambda_{\alpha} - \left\langle \lambda_{\alpha} \right\rangle) \, \boldsymbol{n}_{\alpha} \otimes \boldsymbol{n}_{\alpha} \end{split}$$

Then

$$\psi^{+} = \frac{\lambda}{2} \langle \operatorname{tr} \varepsilon \rangle^{2} + \mu \operatorname{tr}(\varepsilon^{+} : \varepsilon^{+})$$
$$\psi^{-} = \frac{\lambda}{2} (\operatorname{tr} \varepsilon - \langle \operatorname{tr} \varepsilon \rangle)^{2} + \mu \operatorname{tr}(\varepsilon^{-} : \varepsilon^{-})$$

$arepsilon^-$: the compressive strain tensor

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

Nov 2019 14 / 79

< □ > < 同 > < 回 > < 回 > < 回 >

To establish the tensile (ψ^+) and compressive (ψ^-) contributions of the elastic strain energy, the eigenvalues, λ_{α} , and associated egenvectors, \mathbf{n}_{α} , of the strain tensor $\boldsymbol{\varepsilon}$, are computed such that

$$egin{aligned} oldsymbol{arepsilon} & oldsymbol{arepsilon} & = \sum_lpha \lambda_lpha \, oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha & = oldsymbol{arepsilon}^+ + oldsymbol{arepsilon}^- \ & = \sum_lpha \left< \lambda_lpha
ight> oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha + \sum_lpha (\lambda_lpha - \left<\lambda_lpha
ight>) oldsymbol{n}_lpha \otimes oldsymbol{n}_lpha \ & oldsymbol{arepsilon} & o$$

Then

$$\begin{split} \psi^{+} &= \frac{\lambda}{2} \langle \operatorname{tr} \varepsilon \rangle^{2} + \mu \operatorname{tr}(\varepsilon^{+} : \varepsilon^{+}) \\ \psi^{-} &= \frac{\lambda}{2} (\operatorname{tr} \varepsilon - \langle \operatorname{tr} \varepsilon \rangle)^{2} + \mu \operatorname{tr}(\varepsilon^{-} : \varepsilon^{-}) \end{split}$$

(4) (日本)

• The effect of *c* on the Darcy flow is realized by artificially inflating permeability in open fractures, to model Poiseuille flow.

$$\kappa_{\rm m} = \kappa I + (1-c)^b \left(rac{w^2}{12} - \kappa
ight) (I - nn^{\scriptscriptstyle T})$$

• w is the regularized crack width, $w^2 = (\lambda_\perp - 1)^2 L_\perp^2 \chi_{c < c_{\rm crit}}$

A (10) < A (10) < A (10) </p>

• The effect of *c* on the Darcy flow is realized by artificially inflating permeability in open fractures, to model Poiseuille flow.

$$\boldsymbol{\kappa}_{\mathsf{m}} = \kappa \boldsymbol{I} + (1-c)^{b} \left(\frac{w^{2}}{12} - \kappa
ight) (\boldsymbol{I} - \boldsymbol{n} \boldsymbol{n}^{\mathsf{T}})$$

• w is the regularized crack width, $w^2 = (\lambda_\perp - 1)^2 L_\perp^2 \chi_{c < c_{
m crit}}$

< ∃ > < ∃

 The effect of c on the Darcy flow is realized by artificially inflating permeability in open fractures, to model Poiseuille flow.

$$\boldsymbol{\kappa}_{\mathsf{m}} = \kappa \boldsymbol{I} + (1-c)^{b} \left(\frac{w^{2}}{12} - \kappa \right) (\boldsymbol{I} - \boldsymbol{n} \boldsymbol{n}^{\mathsf{T}})$$

• w is the regularized crack width, $w^2 = (\lambda_\perp - 1)^2 L_\perp^2 \chi_{c < c_{
m crit}}$

The crack normal vector in physical coordinates

$$m{n} = rac{(
abla m{u})^{-\intercal}
abla c}{|(
abla m{u})^{-\intercal}
abla c|}$$

• = • •

 The effect of c on the Darcy flow is realized by artificially inflating permeability in open fractures, to model Poiseuille flow.

$$\kappa_{\rm m} = \kappa I + (1-c)^b \left(rac{w^2}{12} - \kappa
ight) (I - nn^{\scriptscriptstyle T})$$

• w is the regularized crack width, $w^2 = (\lambda_\perp - 1)^2 L_\perp^2 \chi_{c < c_{
m crit}}$

The local perpendicular stretch

$$\lambda_{\perp} = (\nabla \boldsymbol{u}) \frac{\nabla \boldsymbol{c}}{|\nabla \boldsymbol{c}|} \cdot \boldsymbol{n}$$

★ ∃ ►

 The effect of c on the Darcy flow is realized by artificially inflating permeability in open fractures, to model Poiseuille flow.

$$\kappa_{\rm m} = \kappa I + (1-c)^b \left(rac{w^2}{12} - \kappa
ight) (I - nn^{\scriptscriptstyle T})$$

• w is the regularized crack width, $w^2 = (\lambda_\perp - 1)^2 L_\perp^2 \chi_{c < c_{
m crit}}$

 L_{\perp} : length scale roughly tracing ℓ and meshwidth

 The effect of c on the Darcy flow is realized by artificially inflating permeability in open fractures, to model Poiseuille flow.

$$\kappa_{\rm m} = \kappa I + (1-c)^b \left(rac{w^2}{12} - \kappa
ight) (I - nn^{\scriptscriptstyle T})$$

• w is the regularized crack width, $w^2 = (\lambda_\perp - 1)^2 L_\perp^2 \chi_{c < c_{
m crit}}$

 κ : isotropic un-fractured permeability

< ∃ > < ∃

Coupling and nonlinearities

A D N A B N A B N A B N

Superiterations

Two primary solvers

- A Joint poroelastic solver for displacement and pressure
- B Separate solver for integrity
- Solution for each timestep obtained in an interlaced manner (standard coupling technique)
 - **1** solve A for $(\boldsymbol{u}_{n+1}^{(1)}, p_{n+1}^{(1)})$
 - (a) solve B for $c_{n+1}^{(1)}$
 - 3 solve A for $(u_{n+1}^{(2)}, p_{n+1}^{(2)})$
 - ④ solve B for $c_{n+1}^{(2)}$
 - 5 etc.
- Fully coupled all-in-one solvers for all three unknowns have also been successful

・ 何 ト ・ ヨ ト ・ ヨ ト

Superiterations

Two primary solvers

- A Joint poroelastic solver for displacement and pressure
- B Separate solver for integrity
- Solution for each timestep obtained in an interlaced manner (standard coupling technique)
 - solve A for (*u*⁽¹⁾_{n+1}, *p*⁽¹⁾_{n+1})
 solve B for *c*⁽¹⁾_{n+1}
 solve A for (*u*⁽²⁾_{n+1}, *p*⁽²⁾_{n+1})
 solve B for *c*⁽²⁾_{n+1}
 etc.
- Fully coupled all-in-one solvers for all three unknowns have also been successful

• • = • • = •

Superiterations

Two primary solvers

- A Joint poroelastic solver for displacement and pressure
- B Separate solver for integrity
- Solution for each timestep obtained in an interlaced manner (standard coupling technique)
 - **1** solve A for $(\boldsymbol{u}_{n+1}^{(1)}, p_{n+1}^{(1)})$ **2** solve B for $c_{n+1}^{(1)}$ **3** solve A for $(\boldsymbol{u}_{n+1}^{(2)}, p_{n+1}^{(2)})$ **4** solve B for $c_{n+1}^{(2)}$ **5** etc.
- Fully coupled all-in-one solvers for all three unknowns have also been successful

• • = • • = •

Subiterations

• The poroelastic solver A must itself also be iterative

• Multiple sources of nonlinearity:

- due to the tensile/compressive energy splitting
- due to inherently nonlinear elasticity models
- due to iterative time solvers for dynamic problems (e.g. Newmark)

Backward Euler for quasistatic problems

$$\begin{pmatrix} \boldsymbol{K}(\boldsymbol{c}) & -\boldsymbol{Q} \\ \boldsymbol{Q}^{\mathsf{T}}/\delta_t & \boldsymbol{P}(\boldsymbol{c}) + \boldsymbol{S}/\delta_t \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix}_{n+1} = \begin{pmatrix} f_u \\ f_p \end{pmatrix}_{n+1} + \begin{pmatrix} u \\ \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix}_{n+1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subiterations

- The poroelastic solver A must itself also be iterative
- Multiple sources of nonlinearity:
 - due to the tensile/compressive energy splitting
 - due to inherently nonlinear elasticity models
 - due to iterative time solvers for dynamic problems (e.g. Newmark)

Backward Euler for quasistatic problems

$$\begin{pmatrix} \boldsymbol{K}(\boldsymbol{c}) & -\boldsymbol{Q} \\ \boldsymbol{Q}^{\mathsf{T}}/\delta_t & \boldsymbol{P}(\boldsymbol{c}) + \boldsymbol{S}/\delta_t \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix}_{n+1} = \begin{pmatrix} f_u \\ f_p \end{pmatrix}_{n+1} + \begin{pmatrix} u \\ \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix}_{n+1}$$

.

Subiterations

- The poroelastic solver A must itself also be iterative
- Multiple sources of nonlinearity:
 - due to the tensile/compressive energy splitting
 - due to inherently nonlinear elasticity models
 - due to iterative time solvers for dynamic problems (e.g. Newmark)

Backward Euler for quasistatic problems

$$\begin{pmatrix} \boldsymbol{K}(\boldsymbol{c}) & -\boldsymbol{Q} \\ \boldsymbol{Q}^{\mathsf{T}}/\delta_t & \boldsymbol{P}(\boldsymbol{c}) + \boldsymbol{S}/\delta_t \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix}_{n+1} = \begin{pmatrix} \boldsymbol{f}_u \\ \boldsymbol{f}_p \end{pmatrix}_{n+1} + \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix}_{n+1}$$

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$oldsymbol{M}^* \Delta oldsymbol{a} = egin{pmatrix} oldsymbol{f}_u \ oldsymbol{f}_{
ho} \end{pmatrix}_{n+1} - oldsymbol{ ilde{M}} oldsymbol{a}_{n+1}^i - oldsymbol{ ilde{C}} oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}} oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \boldsymbol{a}_{n+1}^{i+1} &= \boldsymbol{a}_{n+1}^{i} + \Delta \boldsymbol{a} \\ \boldsymbol{v}_{n+1}^{i+1} &= \boldsymbol{v}_{n+1}^{i} + \gamma \delta_t \Delta \boldsymbol{a} \\ \boldsymbol{d}_{n+1}^{i+1} &= \boldsymbol{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \boldsymbol{a} \end{aligned}$$

A D N A B N A B N A B N

Given $\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$ Solve

$$oldsymbol{M}^* \Delta oldsymbol{a} = egin{pmatrix} oldsymbol{f}_u \ oldsymbol{f}_p \end{pmatrix}_{n+1} - ilde{oldsymbol{M}} oldsymbol{a}_{n+1}^i - ilde{oldsymbol{C}} oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}} oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \boldsymbol{a}_{n+1}^{i+1} &= \boldsymbol{a}_{n+1}^{i} + \Delta \boldsymbol{a} \\ \boldsymbol{v}_{n+1}^{i+1} &= \boldsymbol{v}_{n+1}^{i} + \gamma \delta_t \Delta \boldsymbol{a} \\ \boldsymbol{d}_{n+1}^{i+1} &= \boldsymbol{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \boldsymbol{a} \end{aligned}$$

Predicted values for acceleration, velocity and solution

イロト イポト イヨト イヨト 二日

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$oldsymbol{M}^*\Deltaoldsymbol{a} = egin{pmatrix} oldsymbol{f}_u\\ oldsymbol{f}_p \end{pmatrix}_{n+1} - oldsymbol{ ilde{M}}oldsymbol{a}_{n+1}^i - oldsymbol{ ilde{C}}oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}}oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \boldsymbol{a}_{n+1}^{i+1} &= \boldsymbol{a}_{n+1}^{i} + \Delta \boldsymbol{a} \\ \boldsymbol{v}_{n+1}^{i+1} &= \boldsymbol{v}_{n+1}^{i} + \gamma \delta_t \Delta \boldsymbol{a} \\ \boldsymbol{d}_{n+1}^{i+1} &= \boldsymbol{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \boldsymbol{a} \end{aligned}$$

A D N A B N A B N A B N

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$\boldsymbol{M}^* \Delta \boldsymbol{a} = \begin{pmatrix} \boldsymbol{f}_u \\ \boldsymbol{f}_p \end{pmatrix}_{n+1} - \tilde{\boldsymbol{M}} \boldsymbol{a}_{n+1}^i - \tilde{\boldsymbol{C}} \boldsymbol{v}_{n+1}^i - \tilde{\boldsymbol{K}} \boldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \boldsymbol{a}_{n+1}^{i+1} &= \boldsymbol{a}_{n+1}^{i} + \Delta \boldsymbol{a} \\ \boldsymbol{v}_{n+1}^{i+1} &= \boldsymbol{v}_{n+1}^{i} + \gamma \delta_t \Delta \boldsymbol{a} \\ \boldsymbol{d}_{n+1}^{i+1} &= \boldsymbol{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \boldsymbol{a} \end{aligned}$$

 $\tilde{\boldsymbol{M}} = \begin{pmatrix} \boldsymbol{M} \\ \end{pmatrix}$

イロト イポト イヨト イヨト

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$\boldsymbol{M}^* \Delta \boldsymbol{a} = \begin{pmatrix} \boldsymbol{f}_u \\ \boldsymbol{f}_p \end{pmatrix}_{n+1} - \tilde{\boldsymbol{M}} \boldsymbol{a}_{n+1}^i - \tilde{\boldsymbol{C}} \boldsymbol{v}_{n+1}^i - \tilde{\boldsymbol{K}} \boldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \boldsymbol{a}_{n+1}^{i+1} &= \boldsymbol{a}_{n+1}^{i} + \Delta \boldsymbol{a} \\ \boldsymbol{v}_{n+1}^{i+1} &= \boldsymbol{v}_{n+1}^{i} + \gamma \delta_t \Delta \boldsymbol{a} \\ \boldsymbol{d}_{n+1}^{i+1} &= \boldsymbol{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \boldsymbol{a} \end{aligned}$$

 $\tilde{\boldsymbol{C}} = \begin{pmatrix} \boldsymbol{C} & \ \boldsymbol{Q}^{\mathsf{T}} & \boldsymbol{S} \end{pmatrix}$

イロト イポト イヨト イヨト

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$oldsymbol{M}^*\Deltaoldsymbol{a} = egin{pmatrix} oldsymbol{f}_u\\ oldsymbol{f}_p \end{pmatrix}_{n+1} - oldsymbol{ ilde{M}}oldsymbol{a}_{n+1}^i - oldsymbol{ ilde{C}}oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}}oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \mathbf{a}_{n+1}^{i+1} &= \mathbf{a}_{n+1}^{i} + \Delta \mathbf{a} \\ \mathbf{v}_{n+1}^{i+1} &= \mathbf{v}_{n+1}^{i} + \gamma \delta_t \Delta \mathbf{a} \\ \mathbf{d}_{n+1}^{i+1} &= \mathbf{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \mathbf{a} \end{aligned}$$

 $ilde{oldsymbol{\mathcal{K}}} = egin{pmatrix} oldsymbol{\mathcal{K}} & -oldsymbol{Q} \ oldsymbol{P} \end{pmatrix}$

イロト イボト イヨト イヨト

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$oldsymbol{M}^*\Deltaoldsymbol{a} = egin{pmatrix} oldsymbol{f}_u\\ oldsymbol{f}_p \end{pmatrix}_{n+1} - oldsymbol{ ilde{M}}oldsymbol{a}_{n+1}^i - oldsymbol{ ilde{C}}oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}}oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \mathbf{a}_{n+1}^{i+1} &= \mathbf{a}_{n+1}^{i} + \Delta \mathbf{a} \\ \mathbf{v}_{n+1}^{i+1} &= \mathbf{v}_{n+1}^{i} + \gamma \delta_t \Delta \mathbf{a} \\ \mathbf{d}_{n+1}^{i+1} &= \mathbf{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \mathbf{a} \end{aligned}$$

 $\boldsymbol{M}^* = \boldsymbol{\tilde{M}} + \gamma \delta_t \boldsymbol{\tilde{C}} + \beta \delta_t^2 \boldsymbol{\tilde{K}}$

イロト イポト イヨト イヨト

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$oldsymbol{M}^*\Deltaoldsymbol{a} = egin{pmatrix} oldsymbol{f}_u\ oldsymbol{f}_p\end{pmatrix}_{n+1} - oldsymbol{ ilde{M}}oldsymbol{a}_{n+1}^i - oldsymbol{ ilde{C}}oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}}oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \mathbf{a}_{n+1}^{i+1} &= \mathbf{a}_{n+1}^{i} + \Delta \mathbf{a} \\ \mathbf{v}_{n+1}^{i+1} &= \mathbf{v}_{n+1}^{i} + \gamma \delta_t \Delta \mathbf{a} \\ \mathbf{d}_{n+1}^{i+1} &= \mathbf{d}_{n+1}^{i} + \beta \delta_t^2 \Delta \mathbf{a} \end{aligned}$$

A D N A B N A B N A B N

Given
$$\mathbf{a}_{n+1}^i = (\ddot{\mathbf{u}}, \ddot{\mathbf{p}})_{n+1}^i$$
, $\mathbf{v}_{n+1}^i = (\dot{\mathbf{u}}, \dot{\mathbf{p}})_{n+1}^i$, $\mathbf{d}_{n+1}^i = (\mathbf{u}, \mathbf{p})_{n+1}^i$
Solve

$$oldsymbol{M}^*\Deltaoldsymbol{a} = egin{pmatrix} oldsymbol{f}_u\ oldsymbol{f}_p\end{pmatrix}_{n+1} - oldsymbol{ ilde{M}}oldsymbol{a}_{n+1}^i - oldsymbol{ ilde{C}}oldsymbol{v}_{n+1}^i - oldsymbol{ ilde{K}}oldsymbol{d}_{n+1}^i$$

Correct

$$\begin{aligned} \boldsymbol{a}_{n+1}^{i+1} &= \boldsymbol{a}_{n+1}^{i} + \Delta \boldsymbol{a} \\ \boldsymbol{v}_{n+1}^{i+1} &= \boldsymbol{v}_{n+1}^{i} + \boldsymbol{\gamma} \delta_t \Delta \boldsymbol{a} \\ \boldsymbol{d}_{n+1}^{i+1} &= \boldsymbol{d}_{n+1}^{i} + \boldsymbol{\beta} \delta_t^2 \Delta \boldsymbol{a} \end{aligned}$$

Stability: $2\beta \geq \gamma \geq 1/2$, accuracy: $\gamma = 1/2$

イロト 不得 トイヨト イヨト

Adaptivity

- Adaptive refinement is almost mandatory
 - Fractures require high spatial resolution to resolve well (see: $\ell)$
 - $\bullet \ \ldots but$ only locally
- Refining elements with small *c* a *posteriori* is dubious: fractures propagate slower through coarse meshes
- Thus a third layer of iterations: whenever refinement is needed, re-run the last handful of timesteps on the finer mesh.

(4) (3) (4) (4) (4)

Adaptivity

- Adaptive refinement is almost mandatory
 - Fractures require high spatial resolution to resolve well (see: ℓ)
 - \bullet \ldots but only locally
- Refining elements with small *c* a *posteriori* is dubious: fractures propagate slower through coarse meshes
- Thus a third layer of iterations: whenever refinement is needed, re-run the last handful of timesteps on the finer mesh.

.

Adaptivity

- Adaptive refinement is almost mandatory
 - Fractures require high spatial resolution to resolve well (see: ℓ)
 - \bullet \ldots but only locally
- Refining elements with small *c* a *posteriori* is dubious: fractures propagate slower through coarse meshes
- Thus a third layer of iterations: whenever refinement is needed, re-run the last handful of timesteps on the finer mesh.

Adaptive mesh refinement of the crack path

< □ > < 同 > < 回 > < Ξ > < Ξ

Adaptive mesh refinement

- A fine mesh resolution is required to correctly capture the crack development.
- Using a fine uniform mesh is easiest and safest, but too costly.
- An adaptive strategy that refines the mesh only where the crack is propagating is needed.
- We use a multi-pass procedure, using the phase-field value as refinement criterium.
- A linear or quadratic LR B-Spline discretization is used, allowing for local refinement.
- When an initial crack is present, the mesh is refined based on the distance d_e^{c0} from the element center to the initial crack path, before the simulation is started.

Adaptive mesh refinement, initial state

- Load the initial, uniform, background mesh
- $d^{\text{tol}} = \text{min.}$ distance to initial crack path for non-refined elements $\approx h^0$ (characteristic element size of the initial mesh)
 - FOR i = 1 TO number of initial refinement cycles DO
 - Refine all elements e, where $d_e^{c0} < d^{tol}$
 - $d^{\text{tol}} = d^{\text{tol}}/2$

END DO

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Adaptive mesh refinement, multi-pass algorithm

- n_{step} = total number of time steps
- n_{step}^{c} = number of time steps in each refinement cycle
- $n_{cycle} = max$. number of refinement cycles before continuing

FOR i = 1 TO n_{step} DO ! Time step loop

FOR j = 1 TO n_{cycle} TO

• Restore solution state for time t_{i-1}

FOR k = 0 TO $n_{step}^c - 1$ TO

 \bullet Compute elasticity and phase-field solutions at time t_{i+k} END DO

• Refine all elements e, for which $|c|_e < c_{\mathsf{tol}}$

IF no elements were refined THEN exit DO-loop

END DO

• $i = i + n_{step}^{c}$ END DO

イロト イポト イヨト イヨト 二日

Pre-notched Rectangular Plate

A D N A B N A B N A B N
Pre-notched rectangular plate

• • • • • • • • • • • •

Mesh and time step size

Mesh	p	n _{el}	n _{dof}	δ_t [s]
U1	2	400 imes 160	133650	$1.0 imes10^{-7}$
U2	2	800 imes 320	523250	$5.0 imes10^{-8}$
U3	2	1600 imes 640	2066580	$2.5 imes10^{-8}$
A0	2	4054	7676	$1.0 imes10^{-7}$
÷		:	÷	
An	2	8686	15648	$1.0 imes10^{-7}$

<ロト < 四ト < 三ト < 三ト

Elastic energy

Elastic energy, uniform meshes

 Elastic energy, adapted meshes

Dissipated energy

Dissipated energy, uniform meshes

Dissipated energy, adapted meshes

T. Kvamsdal (NTNU/SINTEF)

Nov 2019 33 / 79

Phase-field for Mesh U1, p=2

from M. J. Borden *et al.*, "A phase-field description of dynamic brittle fracture", Comput. Methods Appl. Mech. Engrg. 217–220 (2012) 77–95.

イロト 不得下 イヨト イヨト

Phase-field for Mesh U1, p=2

with IFEM

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

Nov 2019 34 / 79

Phase-field for Mesh U1, p=2

with IFEM (4th order phase field)

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

Nov 2019 34 / 79

<ロ> <四> <四> <四> <四</td>

Phase-field for Mesh U2, p=2

from M. J. Borden *et al.*, "A phase-field description of dynamic brittle fracture", Comput. Methods Appl. Mech. Engrg. 217–220 (2012) 77–95.

< □ > < 同 > < 回 > < 回 > < 回 >

Phase-field for Mesh U2, p=2

with IFEM

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

▶ < ≣ ▶ ≣ ∽ < < Nov 2019 35 / 79

Phase field along the vertical line x = 60 at t = 0.079 ms

Phase field along the vertical line x = 70 at t = 0.079 ms

T. Kvamsdal (NTNU/SINTEF)

Nov 2019 38 / 79

Phase field along the vertical line x = 80 at t = 0.079 ms

T. Kvamsdal (NTNU/SINTEF)

Phase field along the vertical line x = 90 at t = 0.079 ms

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

Nov 2019 38 / 79

Pre-notched square plate

A D N A B N A B N A B N

Pre-notched square plate

- $E = 210 \text{ kN/mm}^2$ $\nu = 0.3$ $\mathcal{G}_c = 2.7 \text{ mN/mm}$ $\ell_0 = 0.0075 \text{ mm}$
- Adaptive with 3, 4 and 5 refinement levels
- p = 1, 2 (LR B-splines)
- a) Tension test
- b) Pure shear test

(Figure from C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, vol. 199 (2010), pp. 2765–2778.)

Tension test, initial crack by C^{-1} -continuity

T. Kvamsdal (NTNU/SINTEF)

▲ ■ ▶ ■ の Q G Nov 2019 41/79

< □ > < □ > < □ > < □ > < □ >

Tension test, initial crack by C^{-1} -continuity

T. Kvamsdal (NTNU/SINTEF)

< □ > < □ > < □ > < □ > < □ >

Tension test, phase field along x = 0.5 at t = 0.7

Initial C^{-1} slit, time = 0.7000

Tension test, phase field along x = 0.6 at t = 0.7

Tension test, phase field along x = 0.7 at t = 0.7

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

Nov 2019 42 / 79

Tension test, phase field along x = 0.8 at t = 0.7

T. Kvamsdal (NTNU/SINTEF)

Tension test, phase field along x = 0.9 at t = 0.7

Tension test, phase field along x = 1.0 at t = 0.7

Tension test, reaction force vs. displacement

Tension test, initial crack by phase field

T. Kvamsdal (NTNU/SINTEF)

< □ > < □ > < □ > < □ > < □ >

Tension test, initial crack by phase field

T. Kvamsdal (NTNU/SINTEF)

< □ > < □ > < □ > < □ > < □ >
Tension test, phase field along x = 0.5 at t = 0.63

Tension test, phase field along x = 0.6 at t = 0.63

Tension test, phase field along x = 0.7 at t = 0.63

Tension test, phase field along x = 0.8 at t = 0.63

Tension test, phase field along x = 0.9 at t = 0.63

Tension test, phase field along x = 1.0 at t = 0.63

Shear test, initial crack by C^{-1} -continuity

T. Kvamsdal (NTNU/SINTEF)

< □ > < □ > < □ > < □ > < □ >

Shear test, initial crack by C^{-1} -continuity

T. Kvamsdal (NTNU/SINTEF)

▲口> ▲圖> ▲注> ▲注> 三注

Shear test, phase field along y = 0.5 at t = 2

T. Kvamsdal (NTNU/SINTEF)

Shear test, phase field along y = 0.4 at t = 2

Initial C^{-1} slit, time = 2.0000

T. Kvamsdal (NTNU/SINTEF)

Shear test, phase field along y = 0.3 at t = 2

Initial C^{-1} slit, time = 2.0000

Shear test, phase field along y = 0.2 at t = 2

Initial C^{-1} slit, time = 2.0000

T. Kvamsdal (NTNU/SINTEF)

Poroelastic fracturing

Nov 2019 47 / 79

Shear test, phase field along y = 0.1 at t = 2

Initial C^{-1} slit, time = 2.0000

T. Kvamsdal (NTNU/SINTEF)

Shear test, reaction force vs. displacement

L-shaped domain

< □ > < □ > < □ > < □ > < □ >

L-shaped domain

 $E = 25.85 \,\mathrm{MN}/\mathrm{mm}^2$ $\nu = 0.18$ $\mathcal{G}_c = 0.09 \,\mathrm{kN/mm}$ $\ell_0 = 1.875 \,\mathrm{mm}$ The displacement u

(4) (3) (4) (4) (4)

10 mm wide segment

(Figure from M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, vol. 55 (2014), pp. 383–405.)

L-shaped domain, 5 patches, $3 \times 50 \times 50$, p = 1

T. Kvamsdal (NTNU/SINTEF)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

L-shaped domain, 5 patches, $3 \times 50 \times 50$, p = 1

T. Kvamsdal (NTNU/SINTEF)

(日) (四) (日) (日) (日)

L-shaped domain, 5 patches, $3 \times 25 \times 25$, p = 1

< □ > < □ > < □ > < □ > < □ >

L-shaped domain, 5 patches, $3 \times 25 \times 25$, p = 1

F. Kvamsdal (NTNU	/SINTEF)
i i i i i i i i i i i i i i i i i i i		,

< ロ > < 回 > < 回 > < 回 > < 回 >

< □ > < □ > < □ > < □ > < □ >

- Square domain with a pre-formed horizontal crack in the middle, with some prescribed half-length ℓ .
- The crack is pressurized with a flux, causing widening and potentially crack propagation.

< 回 > < 三 > < 三

- Square domain with a pre-formed horizontal crack in the middle, with some prescribed half-length ℓ .
- The crack is pressurized with a flux, causing widening and potentially crack propagation.

- Has some theoretical results associated with a fracture of the "interface" type.
- Literature contains a rich variety of vaguely dissimilar parameters, modeling choices and assumptions.
- Makes direct comparisons quite challenging.

Author	l	L	h	lo	E		\mathcal{G}_{c}
Bourdin (A)	0.2	4		0.01	1 Pa		$1\mathrm{N/m}$
Bourdin (B)	0.2		$0.02\overline{2}$		1 Pa		$1\mathrm{N/m}$
Lee	0.2	4	0.022	0.045	1 Pa	0.2	$1\mathrm{N/m}$
Singh	0.2		0.02		10 GPa	0.3	$100\mathrm{N/m}$
Us (A)	0.2	4	0.025	0.025	1 Pa	0.2	$1\mathrm{N/m}$
Us (B)	0.2	4	0.05	0.05	10 GPa		$1\mathrm{N/m}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Has some theoretical results associated with a fracture of the "interface" type.
- Literature contains a rich variety of vaguely dissimilar parameters, modeling choices and assumptions.
- Makes direct comparisons quite challenging.

Author	l	L	h	lo	E		\mathcal{G}_{c}
Bourdin (A)	0.2	4		0.01	1 Pa		$1\mathrm{N/m}$
Bourdin (B)	0.2		0.022		1 Pa		$1\mathrm{N/m}$
Lee	0.2	4	0.022	0.045	1 Pa	0.2	$1\mathrm{N/m}$
Singh	0.2		0.02		10 GPa	0.3	$100\mathrm{N/m}$
Us (A)	0.2	4	0.025	0.025	1 Pa	0.2	$1\mathrm{N/m}$
Us (B)	0.2	4	0.05	0.05	10 GPa		$1\mathrm{N/m}$

< ∃ > < ∃

- Has some theoretical results associated with a fracture of the "interface" type.
- Literature contains a rich variety of vaguely dissimilar parameters, modeling choices and assumptions.
- Makes direct comparisons quite challenging.

Author	l	L	h	lo	E		\mathcal{G}_{c}
Bourdin (A)	0.2	4		0.01	1 Pa		$1\mathrm{N/m}$
Bourdin (B)	0.2		0.022		1 Pa		$1\mathrm{N/m}$
Lee	0.2	4	0.022	0.045	1 Pa	0.2	$1\mathrm{N/m}$
Singh	0.2		0.02		10 GPa	0.3	$100\mathrm{N/m}$
Us (A)	0.2	4	0.025	0.025	1 Pa	0.2	$1\mathrm{N/m}$
Us (B)	0.2	4	0.05	0.05	10 GPa		$1\mathrm{N/m}$

3 🕨 🖌 3

- Has some theoretical results associated with a fracture of the "interface" type.
- Literature contains a rich variety of vaguely dissimilar parameters, modeling choices and assumptions.
- Makes direct comparisons quite challenging.

Author	ℓ	L	h	ℓ_0	Ε	ν	\mathcal{G}_{c}
Bourdin (A)	0.2	4		0.01	1 Pa		$1\mathrm{N/m}$
Bourdin (B)	0.2	8	$0.02\overline{2}$		1 Pa		$1\mathrm{N/m}$
Lee	0.2	4	$0.02\overline{2}$	0.045	1 Pa	0.2	$1\mathrm{N/m}$
Singh	0.2		$0.0\overline{2}$		10 GPa	0.3	$100\mathrm{N/m}$
Us (A)	0.2	4	0.025	0.025	1 Pa	0.2	$1\mathrm{N/m}$
Us (B)	0.2	4	0.05	0.05	10 GPa	0.0	$1\mathrm{N/m}$

3 🕨 🖌 3

Crack width for various meshes (E = 1 Pa, $G_c = 1 \text{ N/m}$)

Crack width for N = 40, 80, 160 elements compared to theoretical

・ 何 ト ・ ヨ ト ・ ヨ ト

Crack width for various times (E = 10 GPa, $\mathcal{G}_c = 1 \text{ N/m}$)

イロト イヨト イヨト イヨト

Pressure vs. crack volume

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Sneddon case: Internal crack with injected fluid

M.F. Wheeler, T. Wick, W. Wollner. An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Engrg. 271 (2014) 69–85.

• • = • • =

The Sneddon case: Internal crack with injected fluid

Material parameters

$$E = 1 \text{ Pa}$$

 $\nu = 0.2$
 $\mathcal{G}_c = 1 \text{ N/m}$
 $\ell_0 = 5 \text{ mm}$

Injected fluid pressure

$$p(t)
ightarrow \mathbf{f}_p = \int_\Omega p(t)
abla c \mathbf{N}$$

- *p* = 0.001 (constant)
- p = t (linearly increasing)

< ∃ ►

Sneddon: Constant pressure case

Calculated crack opening displacement:

$$\operatorname{COD}(x) = \int_{y} \mathbf{u}(x, y) \cdot \nabla c(x, y)$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Sneddon: Constant pressure case

- In this test we used a square domain (4×4)
- Uniform meshes:
 - $h = 0.04 \Rightarrow 100 imes 100$ elements,
 - $h = 0.005 \Rightarrow 800 \times 800$ elements.
- Seems to converge for h < 0.0067 (600 × 600 elements).

Sneddon: linearly increasing pressure

Initial phase field.

- Uniform background mesh, 32 imes 16 elements ightarrow h = 0.25
- 5 levels pre-refinement along center line $\rightarrow h_{\min} = 00078125$

(日) (四) (日) (日) (日)

Sneddon: linearly increasing pressure

Phase field at p = t = 2.12

<ロト <問ト < 目と < 目と

Phase field at p = t = 2.05.

- Uniform background mesh, 32 imes 16 elements ightarrow h = 0.25
- 6 levels pre-refinement along center line $\rightarrow h_{\min} = 0.00390625$

イロト イヨト イヨト イヨト

Phase field at p = t = 0 on initial mesh.

- Uniform background mesh, 32 imes 16 elements ightarrow h = 0.25
- 5 levels adaptive refinement $\rightarrow h_{\min} = 00078125$

イロト 不得 トイラト イラト 一日

Phase field at t = 2.12 on adapted mesh.

< □ > < □ > < □ > < □ > < □ >

Phase field at t = 2.05 on adapted mesh.

- Uniform background mesh, 32 imes 16 elements ightarrow h = 0.25
- 6 levels adaptive refinement $\rightarrow h_{\min} = 0.00390625$

(日) (四) (日) (日) (日)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figures reproduced from Miehe and Mauthe (2015)

T. Kvamsdal (NTNU/SINTEF)

A D N A B N A B N A B N

Figures reproduced from Miehe and Mauthe (2015)

T. Kvamsdal (NTNU/SINTEF)

A D N A B N A B N A B N

IFEM

T. Kvamsdal	(NTNU	/SINTEF)
-------------	-------	----------

< □ > < □ > < □ > < □ > < □ >

Implementation

< □ > < □ > < □ > < □ > < □ >

Core library OO isogeometric FEM library github.com/OPM/IFEM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IFEM

github.com/OPM/IFEM

< □ > < □ > < □ > < □ > < □ >

IFEM

(日) (四) (日) (日) (日)

IFEM

(日) (四) (日) (日) (日)

Basic usage

LinEl inputfile.xinp [OPTIONS...] PoroElasticity inputfile.xinp [OPTIONS...] FractureDynamics inputfile.xinp [OPTIONS...]

< □ > < □ > < □ > < □ > < □ > < □ >

Basic usage

LinEl inputfile.xinp [OPTIONS...] PoroElasticity inputfile.xinp [OPTIONS...] FractureDynamics inputfile.xinp [OPTIONS...]

Input file in XML format specifying geometry, material parameters, boundary conditions, etc.

・ 何 ト ・ ヨ ト ・ ヨ ト

Basic usage

LinEl inputfile.xinp [OPTIONS...] PoroElasticity inputfile.xinp [OPTIONS...] FractureDynamics inputfile.xinp [OPTIONS...]

More significant simulation options are often given on the command line.

(4) (日本)

- -hdf5: Turn on output in HDF5 format. Use IFEM-to-VT¹ to convert to e.g. VTK.
- -vtf (0|1): Output ASCII/binary VTF files.
- -(dense|spr|superlu|samg|petsc): Choose linear solver backend. (PETSc recommended.)
- -LR: Use locally refined spline basis functions instead of tensorial splines. (Needed for adaptivity.)

< □ > < 同 > < 回 > < Ξ > < Ξ

¹https://github.com/TheBB/IFEM-to-VT

- -hdf5: Turn on output in HDF5 format. Use IFEM-to-VT¹ to convert to e.g. VTK.
- -vtf (0|1): Output ASCII/binary VTF files.
- -(dense|spr|superlu|samg|petsc): Choose linear solver backend. (PETSc recommended.)
- -LR: Use locally refined spline basis functions instead of tensorial splines. (Needed for adaptivity.)

< □ > < 同 > < 回 > < Ξ > < Ξ

¹https://github.com/TheBB/IFEM-to-VT

- -hdf5: Turn on output in HDF5 format. Use IFEM-to-VT¹ to convert to e.g. VTK.
- -vtf (0|1): Output ASCII/binary VTF files.
- -(dense|spr|superlu|samg|petsc): Choose linear solver backend. (PETSc recommended.)
- -LR: Use locally refined spline basis functions instead of tensorial splines. (Needed for adaptivity.)

¹https://github.com/TheBB/IFEM-to-VT

< □ > < 同 > < 回 > < Ξ > < Ξ

- -hdf5: Turn on output in HDF5 format. Use IFEM-to-VT¹ to convert to e.g. VTK.
- -vtf (0|1): Output ASCII/binary VTF files.
- -(dense|spr|superlu|samg|petsc): Choose linear solver backend. (PETSc recommended.)
- -LR: Use locally refined spline basis functions instead of tensorial splines. (Needed for adaptivity.)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

¹https://github.com/TheBB/IFEM-to-VT

• -2D: Enable elastic plane strain.

- -dyn: Enable dynamic Newmark time-based solver.
- -halfstatic: Quasi-static elastic solver coupled with dynamic flow solver.
- -fullstatic: Fully quasi-static formulation.
- -mixed: Reduced continuity mixed order formulation.
- -mixed-full: Full continuity mixed order formulation.

★ ∃ ► ★

- -2D: Enable elastic plane strain.
- -dyn: Enable dynamic Newmark time-based solver.
- -halfstatic: Quasi-static elastic solver coupled with dynamic flow solver.
- -fullstatic: Fully quasi-static formulation.
- -mixed: Reduced continuity mixed order formulation.
- -mixed-full: Full continuity mixed order formulation.

- -2D: Enable elastic plane strain.
- -dyn: Enable dynamic Newmark time-based solver.
- -halfstatic: Quasi-static elastic solver coupled with dynamic flow solver.
- -fullstatic: Fully quasi-static formulation.
- -mixed: Reduced continuity mixed order formulation.
- -mixed-full: Full continuity mixed order formulation.

- -2D: Enable elastic plane strain.
- -dyn: Enable dynamic Newmark time-based solver.
- -halfstatic: Quasi-static elastic solver coupled with dynamic flow solver.
- -fullstatic: Fully quasi-static formulation.
- -mixed: Reduced continuity mixed order formulation.
- -mixed-full: Full continuity mixed order formulation.

- -2D: Enable elastic plane strain.
- -dyn: Enable dynamic Newmark time-based solver.
- -halfstatic: Quasi-static elastic solver coupled with dynamic flow solver.
- -fullstatic: Fully quasi-static formulation.
- -mixed: Reduced continuity mixed order formulation.
- -mixed-full: Full continuity mixed order formulation.

- -2D: Enable elastic plane strain.
- -dyn: Enable dynamic Newmark time-based solver.
- -halfstatic: Quasi-static elastic solver coupled with dynamic flow solver.
- -fullstatic: Fully quasi-static formulation.
- -mixed: Reduced continuity mixed order formulation.
- -mixed-full: Full continuity mixed order formulation.

-adap: Enable adaptivity

- -poro: Enable poroelastic backend (otherwise, pure elasticity is used)
- -nocrack: Disable fracture phase-field coupling.
- -explcrack: Enable explicit crack formulation.
- -semiimplicit: Enable semi-implicit coupling.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- -adap: Enable adaptivity
- -poro: Enable poroelastic backend (otherwise, pure elasticity is used)
- -nocrack: Disable fracture phase-field coupling.
- -explcrack: Enable explicit crack formulation.
- -semiimplicit: Enable semi-implicit coupling.

(4) (日本)

- -adap: Enable adaptivity
- -poro: Enable poroelastic backend (otherwise, pure elasticity is used)
- -nocrack: Disable fracture phase-field coupling.
- -explcrack: Enable explicit crack formulation.
- -semiimplicit: Enable semi-implicit coupling.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- -adap: Enable adaptivity
- -poro: Enable poroelastic backend (otherwise, pure elasticity is used)
- -nocrack: Disable fracture phase-field coupling.
- -explcrack: Enable explicit crack formulation.
- -semiimplicit: Enable semi-implicit coupling.

A B b A B b

- -adap: Enable adaptivity
- -poro: Enable poroelastic backend (otherwise, pure elasticity is used)
- -nocrack: Disable fracture phase-field coupling.
- -explcrack: Enable explicit crack formulation.
- -semiimplicit: Enable semi-implicit coupling.

Input file format

A basic overview follows. More information can be found on the OPM IFEM wiki.². The file is constituted of several *contexts*.

```
<simulation>
  <context1>
    settings...
  </context1>
    <context2>
    settings...
  </context2>
    more contexts...
  </simulation>
```

4 3 > 4 3

²https://github.com/opm/ifem/wiki

Geometry context

Example: a geometry of five patches stored in foo.g2,³ split over two processes, where the first three patches should be *hp*-refined.

```
<geometry>
<partitioning procs="2">
    <part proc="0" lower="1" upper="3"/>
        <part proc="1" lower="4" upper="5"/>
        </partitioning>
        <patchfile>foo.g2</patchfile>
        <refine lowerpatch="1" upperpatch="3" u="1" v="2" w="3"/>
        <raiseorder lowerpatch="1" upperpatch="3" u="1" v="2" w="3"/>
</geometry>
```

³Splipy can be used to generate G2 files: https://github.com/sintefmath/Splipy

Topology sets

Use topology sets to bundle boundary components into named units for easier application of boundary conditions.

```
<geometry>
  <topologysets>
    <set name="myset" type="face">
      <item patch="1">1 2 3</item>
    </set>
    <set name="yourset" type="edge">
      <item patch="1">4</item>
    </set>
    <set name="theirset" type="vertex">
      <item patch="2">5</item>
    </set>
  </topologysets>
</geometry>
```

イロト イポト イヨト イヨト 二日

Patch topology

イロト 不得下 イヨト イヨト 二日

Boundary conditions

Use the <boundaryconditions> context to apply boundary conditions. <boundaryconditions> <dirichlet set="myset" basis="1" comp="2"/> <neumann set="yourset" comp="12" direction="0">-500</neumann> <neumann set="theirset" type="expression">x * y * z</neumann> </boundaryconditions>

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Timestepping

Use the <timestepping> context. It's quite simple.

```
<timestepping>
<step start="0.0" end="0.5" dt="0.05"/>
<step start="0.5" end="2.0" dt="0.1"/>
</timestepping>
```

イロト イポト イヨト イヨト 二日

- <adaptive>: Fine-tune parameters for adaptive mesh refinement.
- <initialconditions>: Set initial conditions for time-stepper.
- <linearsolver>: Fine-tune parameters for the linear solver (preconditioners, tolerances, number of iterations, multigrid...)
- <newmarksolver>: Parameters for the dynamic Newmark time-stepping algorithm.
- <postprocessing>: Can be used to specify extra output options, such as sampling resolution, projections used for recovery of secondary solutions and adaptive simulations, or debug output of the LHS and RHS.
- <restart>: Used to restart a simulation from the last state of a previous run.

(日) (四) (日) (日) (日)

- <adaptive>: Fine-tune parameters for adaptive mesh refinement.
- <initialconditions>: Set initial conditions for time-stepper.
- <linearsolver>: Fine-tune parameters for the linear solver (preconditioners, tolerances, number of iterations, multigrid...)
- <newmarksolver>: Parameters for the dynamic Newmark time-stepping algorithm.
- <postprocessing>: Can be used to specify extra output options, such as sampling resolution, projections used for recovery of secondary solutions and adaptive simulations, or debug output of the LHS and RHS.
- <restart>: Used to restart a simulation from the last state of a previous run.

イロト イポト イヨト イヨト

- <adaptive>: Fine-tune parameters for adaptive mesh refinement.
- <initialconditions>: Set initial conditions for time-stepper.
- <linearsolver>: Fine-tune parameters for the linear solver (preconditioners, tolerances, number of iterations, multigrid...)
- <newmarksolver>: Parameters for the dynamic Newmark time-stepping algorithm.
- <postprocessing>: Can be used to specify extra output options, such as sampling resolution, projections used for recovery of secondary solutions and adaptive simulations, or debug output of the LHS and RHS.
- <restart>: Used to restart a simulation from the last state of a previous run.

イロト イポト イヨト イヨト

- <adaptive>: Fine-tune parameters for adaptive mesh refinement.
- <initialconditions>: Set initial conditions for time-stepper.
- <linearsolver>: Fine-tune parameters for the linear solver (preconditioners, tolerances, number of iterations, multigrid...)
- <newmarksolver>: Parameters for the dynamic Newmark time-stepping algorithm.
- <postprocessing>: Can be used to specify extra output options, such as sampling resolution, projections used for recovery of secondary solutions and adaptive simulations, or debug output of the LHS and RHS.
- <restart>: Used to restart a simulation from the last state of a previous run.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- <adaptive>: Fine-tune parameters for adaptive mesh refinement.
- <initialconditions>: Set initial conditions for time-stepper.
- <linearsolver>: Fine-tune parameters for the linear solver (preconditioners, tolerances, number of iterations, multigrid...)
- <newmarksolver>: Parameters for the dynamic Newmark time-stepping algorithm.
- <postprocessing>: Can be used to specify extra output options, such as sampling resolution, projections used for recovery of secondary solutions and adaptive simulations, or debug output of the LHS and RHS.
- <restart>: Used to restart a simulation from the last state of a previous run.

イロト 不得 トイヨト イヨト 二日

- <adaptive>: Fine-tune parameters for adaptive mesh refinement.
- <initialconditions>: Set initial conditions for time-stepper.
- <linearsolver>: Fine-tune parameters for the linear solver (preconditioners, tolerances, number of iterations, multigrid...)
- <newmarksolver>: Parameters for the dynamic Newmark time-stepping algorithm.
- <postprocessing>: Can be used to specify extra output options, such as sampling resolution, projections used for recovery of secondary solutions and adaptive simulations, or debug output of the LHS and RHS.
- <restart>: Used to restart a simulation from the last state of a previous run.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >