

TNO-USERS FEEDBACK

CÍNTIA G. MACHADO & EDUARDO BARROS

OPM SUMMIT - 30-31 AUGUST 2022 - TRONDHEIM, NORWAY

OUTLINE

-) Overview of TNO users and applications
-) Feedback on:
 -) Hydrocarbon
 - Thermal module
 -) CO₂ storage
 -) H₂ storage
-) Summary

USERS AND APPLICATIONS AT TNO

- > ~10-15 users of OPM in TNO (mostly reservoir engineers and geologists)
- Main applications:
 -) Oil & Gas
 - Geothermal / heat storage
 - CCS / H₂ storage
 -) Geomechanical studies
 - Workflows: history matching, field development optimization, etc.
- **)** Why they choose OPM?
 - Possibility of running multiple runs simultaneously in HPC (free license)
 - User-friendly
 - Not a black-box
 - Proximity with developers / potential of extensions

-) Other software's used:
 - Eclipse
 -) CMG
 - TOUGH2 (+ PHREEQC)
 - DoubletCalc
 -) Intersect
 -) etc.

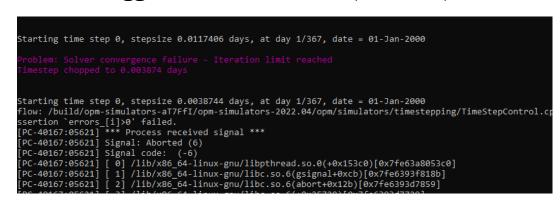
FEEDBACK ON OPM

HYDROCARBON

-) User-friendliness:
 - ▶ Everybody loves ResInsight! ☺
 - Everybody already knew how to use Eclipse
 - Difficult to figure out input errors:

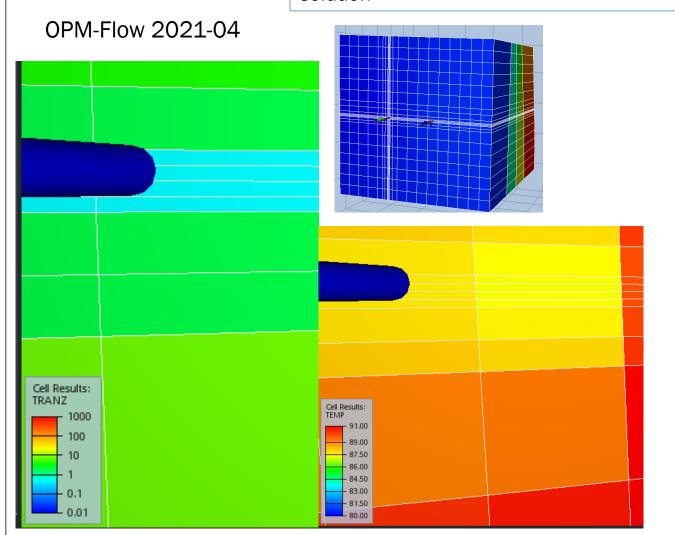

Example: if well diameter > grid cell size:

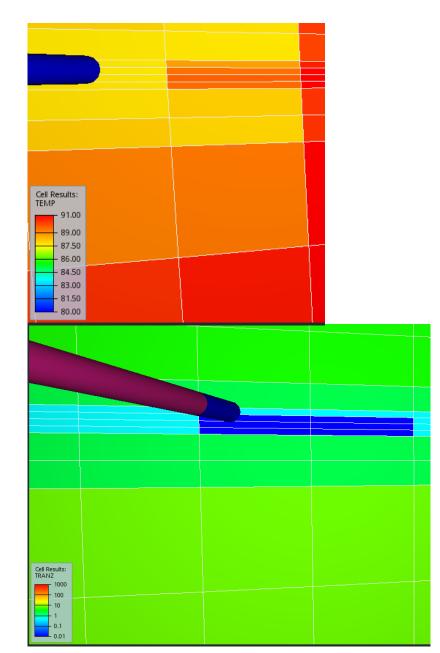
Eclipse: Error: UNREALISTIC CONNECTION DATA FOR all CONNECTION OF WELL. EITHER THE WELL RADIUS IS TOO BIG, OR...


OPM: Start simulation, shuts well and give the error: Error: [BlackoilModelEbos.hpp:319] NaN residual found![Om Well will be shut because it cannot get converged.

-) Improvements for workflows: well trajectory and fault parametrization
- Cannot run several benchmark cases
-) Convergences issues, wells shutting, etc...
-) New versions sometimes:
 - Break features in use
 - Convergence issues in previously running models

Egg model in E100

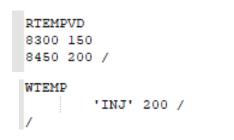

Egg model in OPM-Flow (oil-water)



FEEDBACK ON OPM

TARTAN GRID

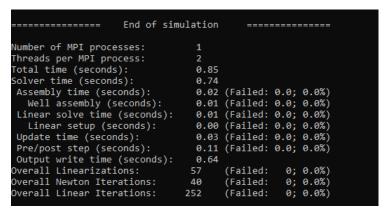
In new versions, some small cells have zero transmissibility's, leading to discontinuity in the solution



GEOTHERMAL APPLICATIONS

OPM-TESTS: SPE1CASE2_THERMAL_ONEPHASE.DATA

) "Hot" injection: similar run time for E100 and OPM-Flow

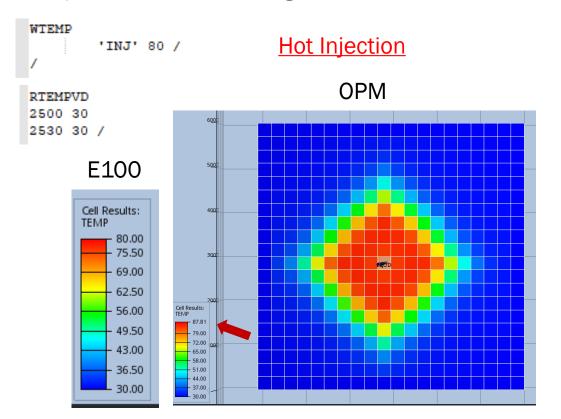

> Cold injection: OPM-Flow takes 300 times longer to finish run

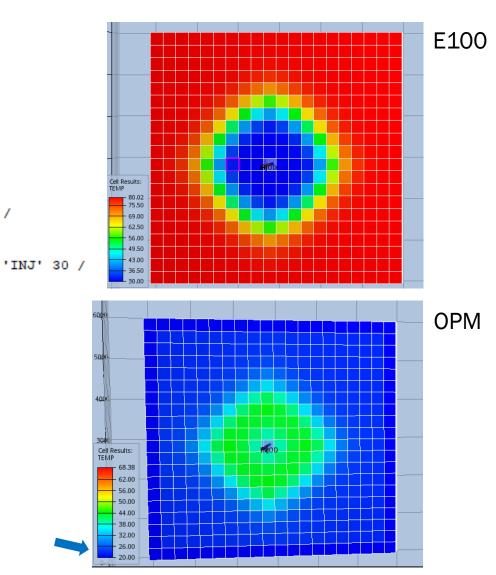
```
WTEMP 'INJ' 30 /
```

E100

```
Error summary
Comments 1
Warnings 1
Problems 0
Errors 0
Bugs 0
Final cpu 1.37 elapsed 1.37
Total number of time steps forced to be accepted 0
```


OPM


```
End of simulation
lumber of MPI processes:
Threads per MPI process:
fotal time (seconds):
Solver time (seconds):
                               304.19
Assembly time (seconds):
                                91.95 (Failed: 75.7; 82.3%)
  Well assembly (seconds):
                                16.05 (Failed: 12.8; 80.0%)
 Linear solve time (seconds):
                               23.16 (Failed: 20.3; 87.5%)
 Linear setup (seconds):
                                11.85 (Failed: 10.4; 87.6%)
Update time (seconds):
                               129.80 (Failed: 106.8; 82.3%)
                                17.51 (Failed: 2.2; 12.5%)
Pre/post step (seconds):
Output write time (seconds):
verall Linearizations:
                            298955
                                      (Failed: 249753; 83.5%)
Overall Newton Iterations: 282558
                                      (Failed: 249753; 88.4%)
Overall Linear Iterations: 282706
                                      (Failed: 249786; 88.4%)
```



THERMAL APPLICATIONS

THERMAL FRONT

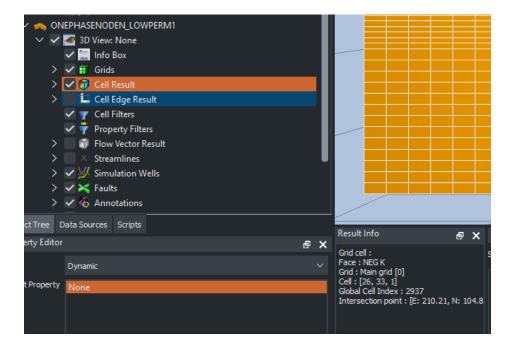
-) OPM-Flow shows temperature out of range (initial, injection)
- Cold injection leads to non-physical solution, with reservoir temperatures not following RTEMPVD

Cold Injection

RTEMPVD

2500 80

WTEMP


2530 80 /

GEOTHERMAL APPLICATIONS

WATDENT AND WATVISCT

- Several bugs fixes related to WATVISCT and WATDENT
- Cases can run, but still convergence issues and very long runs times (time-steps chopped to less than 0.1 day)
 - WATDENT and WATVISCT keywords cannot run together in a reasonable time
 - Due these issues, DoubletCalc (in-house geothermal simulator TNO) is currently used for heat storage in TNO

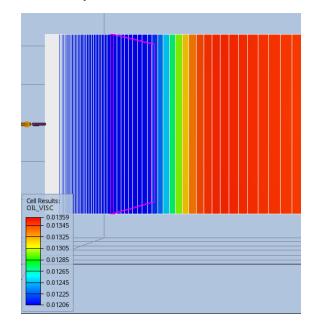
Real heat storage case in the Netherlands

CCS

DEPLETED GAS FIELDS

-) Missing features:
 - Advanced PVT
 - > PVT table as function (P, T)
 - With current inter-tables interpolation:viscosity becomes up to twice the real values
 - Supercritical phase of CO2
 - Thermal model and performance
 - Combining JT + Evaporation
-) Challenges:
 - Thermodynamics of phase transition
 - Sub-zero injection temperatures after shut-ins
-) E300 and GEM have trouble near critical point
- STARS can handles water evaporation + energy

THERMAL_DEPLETED_GAS_COLDINJ.DATA


Modelling CO₂ with oil-phase in OPM:

```
OILVISCT
-- TEMP VISC
30 0.0118
80 0.0133 /
```

rror:

An error occurred while creating the reservoir properties Internal error: Incorrect ordering of values in column: Viscosity

In Eclipse:

- Should loosen up restrictions for PVT tables? Or create a CO₂ phase?
- Eclipse can use oil-gasthermal module. In OPM-Flow only three-phase (or water) + thermal

HYDROGEN STORAGE

DEPLETED GAS FIELDS

- > TNO Reservoir Engineers are searching for a simulation tool to model H₂ storage
- **)** Research-development on-going on DuMu^X (coding by TUC):
 - Microbiological activities
 - Sulfate-reducing bacteria
 - Methanogenic archae
 -) Homoacetogenic archea
 - > Chemical reactions (solid-gas), e.g. pyrite reduction:

$$FeS_2 + H_2 \longrightarrow FeS + H_2S$$

- Pore clogging
- > Will OPM-flow be the tool for large field-case studies?

SUMMARY

TNO USER'S FEEDBACK

-) TNO OPM users pool has grown a lot in in these to years
- Missing things that block users from choosing OPM-Flow
 - New versions: breaking of old features and convergence issues in previously running models
 - Convergence issues
 - Often heard: "It runs in Eclipse, why not in OPM?"
-) Main wishes:
 - More advanced PVT/ (simplified) compositional modelling
 - Better control of reporting (important for workflows)
 - Broader options of grid output (e.g., fluid properties)
 - More advanced boundary modelling (important for thermal and geomechanical studies)
 - More advanced wellbore modelling or coupling
- Comparing with other simulators
 - Difficult to find cause of errors
 - Slow performance (specially for thermal cases)
 - How to motivate people to report issues?

THANK YOU!

