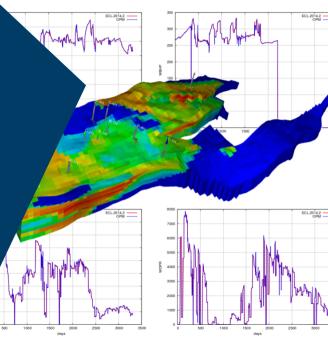

Constrained Pressure Residual (CPR) preconditioners in OPM Flow

Halvor Møll Nilsen, Atgeirr Flø Rasmussen, Computational Geosciences, SINTEF Digital

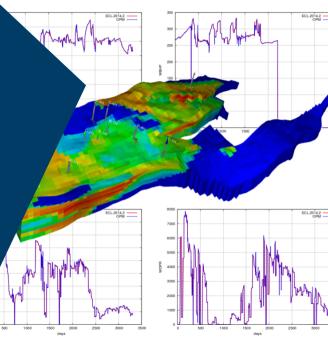
OPM Summit, August 28 - 29, Trondheim, Norway



Motivation Constrainded Pressure Residual (CPR) preconditioner Numerical performance Outlook and concluding remarks

Motivation Constrainded Pressure Residual (CPR) pre-

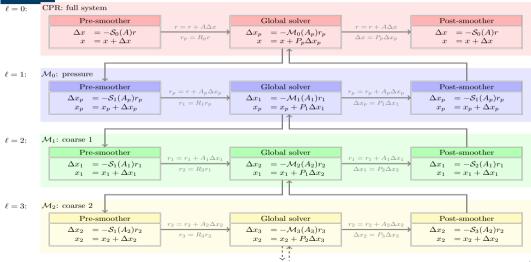
- Linear solves uses between 50-90 % simulation time
 - NORNE: 50 % (np = 8, tol = 0.01, ILUO, old assembly)
- Robust linear solves for high accuracy with limmited performanc overhead:
 - reduce Newton iterations
 - avoid time used on difficult linear systems
- CPR is seen as state of the art solver for Black-Oil Multiphase flow


- Linear solves uses between 50-90 % simulation time
 - NORNE: 50 % (np = 8, tol = 0.01, ILUO, old assembly)
- Robust linear solves for high accuracy with limmited performanc overhead:
 - reduce Newton iterations
 - avoid time used on difficult linear systems
- CPR is seen as state of the art solver for Black-Oil Multiphase flow

Aim: Provide robust accurate solver for Reservoir Simulations in OPM

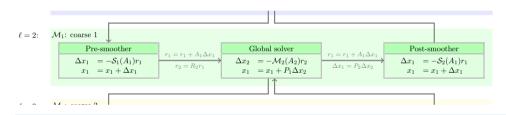
Motivation Constrainded Pressure Residual (CPR) preconditioner

Numerical performance Outlook and concluding remarks



Preconditioneing strageties

- "Algebraic Multigrid type":
 - Hierarchical
 - "Oscillate" between different type smoothers (small scale) and coarse scale solves (large scale)
- Schwartz type: "domain decomposition"
 - Domain based
 - Physics based
- Field split
 - Approximate inverse using approximate inverses of subsystems


AMG type: General linear solver framework: OPM Flow

AMG type: Building block

Solves on one level

Global solve is often only applying one approximate solve i.e. (resulting in V-cycle).

OPM Flow: reduced linear solver

• Full system:

$$A = \left[egin{array}{cc} A_{rr} & A_{rw} \ A_{wr} & A_{ww} \end{array}
ight] \quad A \left[egin{array}{cc} x_r \ x_w \end{array}
ight] = \left[egin{array}{cc} r_r \ r_w \end{array}
ight]$$

• Schur-complement system:

$$S(A) = A_{rr} - A_{rw}A_{ww}^{-1}A_{wr}$$
 and $S(r_r) = r_r - A_{rw}A_{ww}^{-1}r_w$.

$$S(A)x_r = S(r_r)$$

• Equivalent Large system:

$$A\left[\begin{array}{c} x_r\\ \bar{x}_w\end{array}\right] = \left[\begin{array}{c} S(r_r)\\ 0\end{array}\right]$$

 $\bar{x}_w = x_w - A_{ww}^{-1} r_w.$

CPR original approach: OPM Flow

• CPR with fill in:

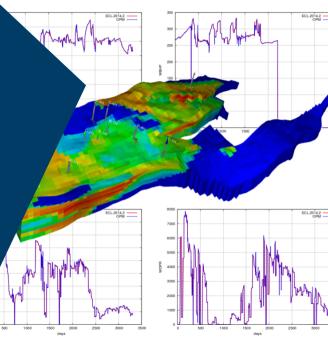
$$R_{er}S(A)R_{vr}^Tx_{rp}=R_{er}S(r_r)$$

• Equivalent extended system

$$\begin{bmatrix} R_{er}A_{rr}R_{vr}^T & R_{er}A_{rw} \\ A_{wr}R_{vr}^T & A_{ww} \end{bmatrix} \begin{bmatrix} x_{rp} \\ \bar{x}_w \end{bmatrix} = \begin{bmatrix} R_{er}S(r_r) \\ 0 \end{bmatrix}$$

• CPR with out fill in (bug found):

$$R_{er}A_{rr}R_{vr}^{T} = R_{e}rS(r_{r})$$



- Problems with traditional:
 - Block structure of wells and reservoir is different
 - Few iterations ightarrow Schur complement $\sum nperf_i^2$ fill in
 - $\ \, \text{No fill in} \rightarrow \text{more iterations}$
- Observation: pressure system has no block structure
- Idea extend pressure system to a well pressure system

Motivation Constrainded Pressure Residual (CPR) pre conditioner Numerical performance

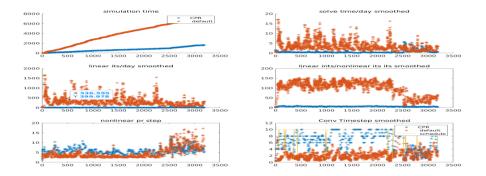
Outlook and concluding remarks

Small systems

Туре	add_w	Newit	Linlt	tol
ParO3	False	408	3156	0.01
ParO3	True	411	3180	0.01
cprw3	False	349	310	0.01
cpr3	True	352	297	0.01
cpr3	False	357	494	0.01

Norne

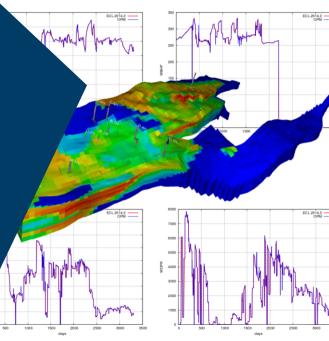
np	Туре	add_w	total	Ass	LTot	LApp	LSet	Newit	LinIt	tol
1	cpr3	True	788	404	232	117	115	1225	1671	0.01
1	cprw3	False	788	400	238	132	106	1218	2057	0.01
1	cpr3	False	871	402	317	209	108	1235	3373	0.01
1	ParO3	True	964	427	357	311	46	1505	21223	0.01
1	ParO3	False	1045	473	386	339	47	1441	21440	0.01



Norne

np	Туре	add_w	total	Ass	LTot	LApp	LSet	Newit	Linlt	tol
4	cprw3	False	281	140	97	52	44	1181	2435	0.01
4	cpr3	True	288	142	100	54	46	1223	2205	0.01
4	cpr3	False	303	142	117	74	43	1227	3421	0.01
4	ParO3	False	330	163	115	102	13	1412	21212	0.01
4	ParO3	True	346	168	124	110	14	1464	21081	0.01

Volve


https://discovervolve.com/2021/09/25/how-to-run-the-volve-oilfield-dynamic-model-inopm-flow/

- Small timesteps were linear solves is easy
- Difficult nonlinear solves, where a lot of linear solves are wasted
- If character of nonlinear solver is
- Any other?

Motivation Constrainded Pressure Residual (CPR) preconditioner Numerical performance Outlook and concluding remarks

Outlook and challenges

- New investigations
 - Flexible solvers on top level
 - Approaches with flexible on all levels
 - Changing linear solvers to avoid performance penalties of CPR when small time-steps is used.
 - New approaches for new CPR for VFP and multisegement wells
- Challenges:
 - Avoid wasted solves
 - Correct exit strategies (maxiter/tol)
 - Minimizing setup time by reuse

Outlook and challenges

- New investigations
 - Flexible solvers on top level
 - Approaches with flexible on all levels
 - Changing linear solvers to avoid performance penalties of CPR when small time-steps is used.
 - New approaches for new CPR for VFP and multisegement wells
- Challenges:
 - Avoid wasted solves
 - Correct exit strategies (maxiter/tol)
 - Minimizing setup time by reuse

Do OPM flow need working solvers with other cPR/AMG types available AMGCL/PETSC? (flow_blackoil_amgcl, flow_blackoil_petsc)

- CPR is particular good on:
 - cases which require accurate linear solves (for correct newton)
 - cases with long timesteps
 - cases with few steps with problematic timestep cuts
 - tight tolerances
- It is critical:
 - to minimize work on wasted linear solves
 - reuse setup
- New CPR with wells seem to be the best CPR on several of the test cases
- CPR is so far shown to be best preconditioner for NORNE, VOLVE,