

1

CO2STORE: Case Studies

Cintia G. Machado

CLIMIT Webinar: HPC-G, 22/09/2023

➤Case 1: CO2 Storage in Aquifer

Case 2: CO2 Storage in Aquifer with Thermal Effects

Case 3: CO2 Storage in Aquifer with Salt Precipitation

Case 1: CO2STORE in Aquifer

Test case for CO2STORE i	In combination with GASWAT.
RUNSPEC	
TITLE	GRID ======
START	INIT
1 'JAN' 2023 /	TOPS
METRIC	2500*2000/
CO2STORE GASWAT DISGASW	DXV 50*20 / DYV 50*20 / DZV
COMPS	10*5 /
2	EQUALS
/	PERMX 100 / PERMY 100 /
DIMENS 50 50 10 /	PERMZ 100 / PORO 0.25 /

https://github.com/OPM/opm-tests/blob/master/co2store/CO2STORE_GASWAT.DATA

Case 1: Comparison Summary

Injector BHP

CO2 Dissolved in Water

Field Gas In Place (Gas Phase)

Case 1: Comparison Performance

- Default solver and tuning parameters for both simulators, serial run
- OPM-Flow master-branch 21/09/2023 (target release 2023.10)
- Intel Core i7-8850H, 6(12) @2.60GHz, RAM 128GB

Case 2: CO2STORE + THERMAL in Aquifer

https://github.com/OPM/opm-tests/blob/master/co2store/CO2STORE_THERMAL.DATA

Case 2: Comparison Field Summary

CO2 Dissolved in Water

CO2 Mobile as Gas Phase

CO2 Trapped as Gas Phase

Case 2: Comparison Performance

- Default solver and tuning parameters for both simulators, serial run
- OPM-Flow master-branch 21/09/2023 (target release 2023.10)
- Intel Core i7-8850H, 6(12) @2.60GHz, RAM 128GB

Case 3: CO2STORE + THERMAL + PRECSALT

Salt precipitation and dissolution assuming instantaneous equilibrium:

$$\frac{\partial}{\partial t} \left[\varphi b_w s_w c_w^{salt} + m_\varphi \varphi_0 s_s \rho^{salt} \right] + \nabla \cdot \left(c_w^{salt} b_w v_w \right) + c_w^{salt} q_w = 0$$

- $\circ \rho^{salt}$: Density of solid salt [kg/m³]
- \circ s_s : (Volume) saturation of precipitated salt, assumed to be immobile
- $\circ c_w^{salt}$: Salt concentration in water [kg/Sm³]
- Change in porosity: $\varphi = (1 s_s)m_{\varphi}\varphi_0$, with $m_{\varphi}(p)$
- Change in permeability: $k = k_0 (\phi/\phi_0)^{\lambda}$ (or any user-defined input table)

Extension of primary variable switching logic

- Salt precipitation and dissolution:
 - \bigcirc If c_w^{salt} exceeds solubility limit, s_s becomes primary variable
 - If $s_s \leq 0$, then c_w^{salt} becomes the primary variable

* Machado, C. G., Egberts, P., Alvestad, J., Hustad, O. S., Salt Precipitation and Water Evaporation Modelling in a Black-Oil Reservoir Simulator, SPE RSC 2023. SPE-212257-MS.

Case 3: Brine-CO2 System

- Black-oil formulation internally, but
 - PVT and solubility computed dynamically as function of temperature, pressure, composition and salinity.
 - Molar fractions of components are computed and output
- This setup for CSS is straightforward for the user
- CO2STORE can be combined with THERMAL and PRECSALT

CO2STORE: CO2-Brine properties

Density	Brine	Water	Hu, J., Duan, Z., Zhu, C., & Chou, I. M. (2007), Wagner, W., & Pruß, A. (2002).	Diffusivity	Water	McLachlan, C. N. S., & Danckwerts, P. V. (1972).
		Salinity	Batzle, M., & Wang, Z. (1992).		Salinity	Ratcliff, G. A., & Holdcroft, J. G. (1963)
		Dissolved CO2	Garcia, J. E. (2001).		Tortuositv	Millington, R. J., & Quirk, J. P. (1961).
	CO2		Span, R., & Wagner, W. (1996)			
Viscosity	Brine		Batzle, M., & Wang, Z. (1992).			
	CO2		Fenghour, A., Wakeham, W. A., & Vesovic, V. (1998).			
Solubility			Spycher, N., Pruess, K., & Ennis-King, J. (2003). Duan, Z., & Sun, R. (2003)			
Enthalpy	Brine	Water	Wagner, W., & Kruse, A. (2013).			
		Salinity	Daubert, T. E., Daubert, T. E., & Danner, R. P. (1989)			
		Dissolved CO2	Duan, Z., & Sun, R. (2003)			
	CO2		Span, R., & Wagner, W. (1996).			

* Sandve, T. H., Gasda, S. E., Rasmussen, A., & Rustad, A. B. (2021). Convective Dissolution in Field Scale Co2 Storage Simulations Using the OPM Flow Simulator. In TCCS–11. CO2 Capture, Transport and Storage. Short Papers from the 11th International Trondheim CCS Conference 2021. SINTEF Academic Press.

Case 3: Benchmark

Release version 2023.04

* Sarah Gasda, Nematollah Zamani and David Landa Marban. "Management of salt precipitation for large-scale CO2 storage projects." InterPore2023

Thank you!

Contact: Dr. Cintia Machado (cintia.machado@tno.nl)