= OPM

OOOOOOOOOOOOOOO

The Culstl framework and
new GPU preconditioners

Tobias Meyer Andersen (SINTEF)

SINTEF

GPU support for the OPM linear solver =OPM

Goals:

e Improve runtime of the linear solver
o Create testbed for combining OPM with GPUs

Challenges:

e Code duplication
o Vendor lock-in
o Isthe problem parallelizable enough?

DUNE Istl =OPM

Distributed and Unified Numerics Environment

o Heavily templated
o numerical schemes
o Iterative solver algorithms

o Typesimplement linear algebra operations
o Types also responsible for parallel execution

Culstl ""OPM

A‘ OPEN POROUS MEDIA

e GPU code in CUDA
e DUNE compatible CUDA classes

o Support dense vectors and sparse matrices

o Use CUDA libraries to implement basic linear algebra operations
m CuBlas
m CuSparse

o Dune::BiCGSTAB<Culstl::CuVector>
o The linear solver will automatically run this on the GPU

Preconditioners =OPM

Good preconditioners are vital for performance
First GPU preconditioner: Incomplete LU factorization

o Implemented using CUDA libraries A = L U
o CuSparse ILU decomposition :

m LU decomposition with same sparsity =i X

o CuSparse triangular solve —t TS —

m Uses graph coloring to expose parallelizability

e Culstl ILU(O) slower than multicore CPU

o Confirms BDA results A i U |
o Try something else

Diagonal ILU preconditioner =OPM

Second preconditioner: DILU

e A is estimated with these variables
o L, the strictly lower part of A
o U, the strictly upper part of A
o E, the diagonal part of LU factorization)
« Less memory usage than ILU(O) (L + E E~ (B + U
o Only stores diagonal from LU factorization!

o Cheaper update, almost same apply
o Expected to be somewhat weaker than ILU(O)

DILU Implementation

o We write our own parallel implementation
o Tried AMGX implementation (unsuccessful)
o Graph coloring extracts parallelism Eoos
o Grid dimensions influence parallelizability
“Cubic” grids are highly parallelizable

o Long and narrow domains — more serial
o Has to do with cell neighborships

o Rows reordered for better memory access
e Implemented on GPU and CPU (OpenMP) i
o Serial CPU version added to DUNE

12000

8000

6000

Number of Rows

4000

2000

=OPM

A‘ OPEN POROUS MEDIA

Level Set Histogram

e]128Xx128x128
512x64x64
e 2048Xx32X32

}l
/\\ \

0 500 1000 1500 2000
Level Sets

Parallelism visualized as histogram

Y axis is number of parallel computations
X axis is number of serial steps

CUDA DILU Beats CPU Counterpart = OPM

OOOOOOOOOOOOOOO

CUDA DILU is faster than ILU(0) and DILU on CPU for large cases

e Sleipner case with 2 million cells for instance:
o High end consumer GPU and CPU

Speedup compared to ILU(16p) Sleipner

39 8000

2.5 7000
6000

2 5000

1.5 4000
1 3000

. I 2000
' 1000

" HN =B]

ILUO(16p) CulLU DILU(16p) CuDILU 0 100 200 300 400 500
m Update m Apply —Rows per level

But OPM has much better preconditioners than ILU(O)...

GPU DILU can be faster than CPU CPR =OPM
Culstl DILU vs CPU CPR

e SPE11C derived benchmarks with cubic grids

o Baseline CPR: two-stage preconditioner using AMG
o More sophisticated, tailored for reservoir equations
o Best preconditioner on the CPU

e GPU code is still faster for large simulations!
o Each linear solve 17% faster on average

Linear Solver Wallclock Time Runtime per Linear Solve

—e— CuDILU (4070Ti) ' —e— CuDILU (4070Ti)
. 10000 : i o~
v —+— 16 process cpr (AMD Ryzen 7950x) 16 process cpr (AMD Ryzen 7950x) -
e el 0
S s 'ﬁ 10
) ' S
[} [0}
£ 1000 : RuJ p
— [
5 >
& b
0] - 10*1
> 8
3 v
L 100 £
o =
£
-

10~2

3-10* 1-10° 2:10° 9:10° 2:10° 3-10° 3.10% 1-105 2.105 9.105 2:106 3-106
Number of Cells Number of Cells

GPU Linear Solver Milestone
'“OPM

Wl OPEN POROUS MEDIA

First full simulation with GPU + CPU > CPU with CPR
GPU + CPU: 21795s

Simulation Total Runtime

CPU: 292925 (1.34 speedup) —— CuDILU (4070T)
16 process cpr (AMD Ryzen 7950x)
o GPU: 39.6% linear solver 10000 /

o 33.3its/linear solve
o 5.7% of lin solv is constructor

m graph coloring and mem transfer
o Theremaining 94.3%

m Update (reuse coloring!)

m Apply

e CPU:51.6% linear solver
. . 100

o 4.4 |ts/I|near solve 3-104 1-10° 2:10° 9-10° 2-10° 3-10°

Number of Cells

1000

Simulation Runtime [s]

Linear Solver improvements in the making =OPM

e GPU Direct support for CUDA cards

o Large speedup of memory transfers between GPUs

e Support for AMD cards
o AMD cards supports HIP, and not CUDA
o Hipify translates CUDA to HIP

m Working proof of concept

o Developers keep writing CUDA

m Generate HIP code when needed only

o Slightly more memory efficient DUNE BiCGSTAB

o Large memory improvements in the linear solver
o One excessive matrix copy on the GPU

Future work

e GPU parallelize more parts of the simulator
o Petrophysical property evaluation
o Linearization/Assembly (with AD)
o Test GPU CPR-AMG implementations from other libraries
o Potentially combine with DILU as smoother
o GPU SPAIl expected to be very efficient for pressure system
e Only a small part of code supports GPUs
o More significant in terms of runtime % on GPU

~ Processes (4) GPU CPU
~ [123020] flow ——— P
~ CUDA HW (0000:01:00.0 - NVIDIA GeFo = = = .z . 2z S———

» 71.4% Kernels

» 28.6% Memory
~ Threads (14)
+ [123020] flow

=OPM

A‘ OPEN POROUS MEDIA

12

