
The CuIstl framework and 
new GPU preconditioners

Tobias Meyer Andersen (SINTEF)

1



GPU support for the OPM linear solver

Goals:

● Improve runtime of the linear solver
● Create testbed for combining OPM with GPUs

Challenges:

● Code duplication
● Vendor lock-in
● Is the problem parallelizable enough?

2



DUNE Istl

Distributed and Unified Numerics Environment

● Heavily templated
○ numerical schemes
○ Iterative solver algorithms

● Types implement linear algebra operations
● Types also responsible for parallel execution

3



CuIstl

● GPU code in CUDA
● DUNE compatible CUDA classes

○ Support dense vectors and sparse matrices
○ Use CUDA libraries to implement basic linear algebra operations

■ CuBlas
■ CuSparse

○ Dune::BiCGSTAB<CuIstl::CuVector>
○ The linear solver will automatically run this on the GPU

4



Preconditioners

Good preconditioners are vital for performance

First GPU preconditioner: Incomplete LU factorization

● Implemented using CUDA libraries 
○ CuSparse ILU decomposition

■ LU decomposition with same sparsity
○ CuSparse triangular solve

■ Uses graph coloring to expose parallelizability

● CuIstl ILU(0) slower than multicore CPU
○ Confirms BDA results
○ Try something else

5



Diagonal ILU preconditioner

6

Second preconditioner: DILU

● A is estimated with these variables
○ L̅, the strictly lower part of A
○ U̅, the strictly upper part of A
○ E, the diagonal part of LU factorization

● Less memory usage than ILU(0)
○ Only stores diagonal from LU factorization!
○ Cheaper update, almost same apply

● Expected to be somewhat weaker than ILU(0)



DILU Implementation

● We write our own parallel implementation
○ Tried AMGX implementation (unsuccessful)

● Graph coloring extracts parallelism
● Grid dimensions influence parallelizability

○ “Cubic” grids are highly parallelizable
○ Long and narrow domains → more serial
○ Has to do with cell neighborships

● Rows reordered for better memory access
● Implemented on GPU and CPU (OpenMP)
● Serial CPU version added to DUNE

7

Parallelism visualized as histogram 

Y axis is number of parallel computations

X axis is number of serial steps



CUDA DILU Beats CPU Counterpart

CUDA DILU is faster than ILU(0) and DILU on CPU for large cases

● Sleipner case with 2 million cells for instance:
○ High end consumer GPU and CPU

But OPM has much better preconditioners than ILU(0)...
8



GPU DILU can be faster than CPU CPR
CuIstl DILU vs CPU CPR

● SPE11C derived benchmarks with cubic grids

● Baseline CPR: two-stage preconditioner using AMG
○ More sophisticated, tailored for reservoir equations
○ Best preconditioner on the CPU

● GPU code is still faster for large simulations!
○ Each linear solve 17% faster on average

9



GPU Linear Solver Milestone

First full simulation with GPU + CPU > CPU with CPR

GPU + CPU: 21795s

CPU: 29292s (1.34 speedup)

● GPU: 39.6% linear solver
○ 33.3 its/linear solve
○ 5.7% of lin solv is constructor

■ graph coloring and mem transfer
○ The remaining 94.3%

■ Update (reuse coloring!)
■ Apply 

● CPU: 51.6% linear solver
○ 4.4 its/linear solve

10



Linear Solver improvements in the making

● GPU Direct support for CUDA cards
○ Large speedup of memory transfers between GPUs

● Support for AMD cards
○ AMD cards supports HIP, and not CUDA
○ Hipify translates CUDA to HIP

■ Working proof of concept
○ Developers keep writing CUDA

■ Generate HIP code when needed only

● Slightly more memory efficient DUNE BiCGSTAB
● Large memory improvements in the linear solver

○ One excessive matrix copy on the GPU

11



Future work

● GPU parallelize more parts of the simulator
○ Petrophysical property evaluation
○ Linearization/Assembly (with AD)

● Test GPU CPR-AMG implementations from other libraries
○ Potentially combine with DILU as smoother
○ GPU SPAI expected to be very efficient for pressure system

● Only a small part of code supports GPUs
○ More significant in terms of runtime % on GPU

12


