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Numerical simulation of Carbon storage
Advantages Drawbacks 

Safety Model uncertainties

Parametric studies Parameters uncertainties

Cost and time efficiency Computational resources 

CO2 storage requires important amount of simulations

à Modify parameters to test scenarios

Explore recent breakthroughs in Artificial Intelligence to accelerate numerical simulation

2) Bicheng Yan et al. 
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Mathematical model and Numerical resolution



Mathematical model
• Incompressible two-phase flow in porous medium

Closure law

Darcy’s law

Mass conservation



Numerical Resolution

1
P, S as main unknowns

Sw = 1 – S auxiliary unknown

Discretization
• Finite volume in space
• Implicit Euler in time 
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• Fully Implicit scheme

è Non-linear system of equations solved using Newton’s method
è Unconditionnaly stable but large time steps can prevent Newton’s method from

converging
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• Fully Implicit scheme

è Non-linear system of equations solved using Newton’s method
è Unconditionnaly stable but large time steps can prevent Newton’s method from

converging

Python library:
Yads: Yet Another Darcy Solver



Reservoir geometries

1D

200 cells
Variable parameters :
• Well injection flow rate: qg

• Time-step: dt
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Reservoir geometries

1D

200 cells
Variable parameters :
• Well injection flow rate: qg

• Time-step: dt

SHPCO2 benchmark1

2D

95 X 60 cells
Variable parameters :
• Initial saturation: S0

• Well injection flow rate: qg

• Time-step: dt 
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1) Florian Haeberlein 2011 Time Space Domain Decomposition Methods 
for Reactive Transport — Application to CO2 Geological Storage. 
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Global Hybrid Newton
• Scenario :

Well opening
Well closing
Transport
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Global Hybrid Newton
• Scenario :

Well opening
Well closing
Transport

Computational cost? 
Well opening requires 40 Newton iterations1

2
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Hybrid initialization: 1D example



Hybrid initialization: 1D example

Pressure
Implicit Pressure Solver

à Solve linear system  



Hybrid initialization: 1D example

Pressure
Implicit Pressure Solver

à Solve linear system  

Saturation
Well events are similar in space and 
time

à Machine Learning model 



Workflow

Generate data Supervised training of 
Saturation model

Plug saturation model 
in Newton’s method

→ Cover large range of well
events

→ Fourier Neural operator

Sguess = fθ(Pimp,S, qg,dt)

→ Compare Hybrid with
Standard Newton’s method



Data Generation
• Variable parameters

• Well injection flow rate: qg Є [10-5, 10-3] m²/s
• Well opening time: dt Є [1, 10] years
• Reservoir gas saturation: S Є [0, 0.6] 

• Generate realistic saturations S
• Consecutive well opening and closing
• 3 600 parameters combination 
• 18 000 samples

• Computational cost
• Run in parallel using MPI
• 360 CPUs
• ≈36 hours



Fourier Neural Operator1

ProjectionLifting

Input 
function

Output 
function

Inference:
Majority of the inference cost is in the Fourier Transform !
Fast Fourier Transform à Nlog(N)

Pressure Saturation

1) Zongyi Li, et al 2020. Fourier neural operator for 
parametric partial differential equations.



Saturation model - Architecture

Saturation

Input features

Saturation qgImplicit pressure dt

Output feature

Saturation



Saturation model - Training

Best model epoch 7295
Test loss 8.7 x 10-4

Train loss 9.3 x 10-4

• Dataset
• 80% train / 20% test

• Computational cost
• 132 hours on NVIDIA V100 GPU 

• Hyperparameters

• Loss:  !
"
!

#$!

" %!&%̂! "
%! "

• Batch size: 128 
• Adam optimizer
• Starting learning rate: 10-4

• Momentum: 0.9
•  Weight decay: 10-4 



Results

Hybrid Newton Standard Newton



Results
Saturation initializations :

Standard

Hybrid



Results
Saturation initializations :

Standard

Hybrid

Solution



Results
Saturation initializations :

Standard

Hybrid

Solution



Results

Acceleration
Test 39%

Train 39%



Summary of Global Hybrid Newton
Advantages Drawbacks

Acceleration of numerical simulation for a 
large range of well events

Offline phase expensive : 

• Data generation
• Model training 

Online phase affordable Constant well location



Conclusion and perspectives

• Integration of Hybrid Newton preconditioning in OPM
• Challenges:
• More complex physical model
• Training data generation cost
• Multi-well handling
• Heterogeneities 
• Discretization

• Current developments:
• Local Hybrid Newton à Reduce training cost / Multi-well handling 
• Generalized well model à Reduce Dataset generation cost
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