

Sub-grid model for convective mixing (DRSDTCON)

OPM Summit 2025

Trine Mykkeltvedt, Tor Harald Sandve, Sarah Gasda

Background

How to resolve the impact of small cm-scale physics for decadal timescales when your simulator only realisticly handles 1-100m grid cells ? CO₂ dissolved in brine SPE 11B, 500years after injection started:

Convective mixing

- CO₂ dissolution increases brine density by 2-5%
- Density instability triggers convection and enhances dissolution

1000m

Χ

Small-scale convection impacts large-scale trapping efficiency over decadal timescales

Resolving fine-scale fingers is not realistic (e.g. SPE 11c)

– CO2 Convective Dissolution Parameter (χ)

DRSDTCON

dimensionless parameter (χ) that controls convective dissolution of CO₂ into in situ brine within a grid cell [Sandve et. al. (2021)], based on an assumption of vertical equilibrium

Sandve, T.H., et al. Convective dissolution in field-scale CO2 storage simulations using the OPM flow simulator. In: TCCS–11, 2021 Elenius, M. T., et al. Convective mixing influenced by the capillary transition zone. Computational Geosciences, 18(3-4), 417-431, 2014

Conceptual model:

1. Initial instantaneous dissolution if both phases coexist

Mykkeltvedt, T.S., et al. New Sub-grid Model for Convective Mixing in Field-Scale Storage Simulation. Transp Porous Med 152, 9, 2025

Sub-grid model

Conceptual model:

- 1. Initial instantaneous dissolution if both phases coexist
- 2. Linear accumulation proportional to Rayleigh number

Conceptual model:

- 1. Initial instantaneous dissolution if both phases coexist
- 2. Linear accumulation proportional to Rayleigh number
- 3. Transition to steady state as fingers reach cell edge

Conceptual model:

- 1. Initial instantaneous dissolution if both phases coexist
- 2. Linear accumulation proportional to Rayleigh number
- 3. Transition to steady state as fingers reach cell edge

4. Decline phase

Dynamic partitioning model

- Modify equilibrium partitioning
- Time-dependent solubility based on Rayleigh number

$$F = \begin{cases} \chi \frac{x_{w,sat}^{c} K_{z} \Delta \rho g}{\mu_{w} \phi S_{w} D_{z}}, & t_{0} < t \le t_{1} \\ \omega, & t_{1} < t \le t_{2}. \end{cases} \overset{x_{w}^{c}}{\underset{t_{0}}{\overset{t_{1}}{\overset{t_{1}}{\overset{t_{1}}{\overset{t_{1}}{\overset{t_{2}}{\overset{t_{1}}{\overset{t_{1}}{\overset{t_{2}$$

Effective component transport

- Modify CO₂ component velocity
- Eliminate spurious convection

$$\frac{\partial}{\partial t} \left(\phi S_{\mathbf{w}} \rho_{\mathbf{w}} x_{\mathbf{w}}^{\mathbf{c}} + \phi S_{\mathbf{n}} \rho_{\mathbf{n}} x_{\mathbf{n}}^{\mathbf{c}} \right) + \\ \nabla \cdot \left(\rho_{\mathbf{w}} x_{\mathbf{w}}^{\mathbf{c}} \hat{\mathbf{v}}_{\mathbf{w}} + \rho_{\mathbf{w}} \left(\min(x_{\mathbf{w}}^{\mathbf{c}}, \psi x_{\mathbf{w}, \text{sat}}^{\mathbf{c}}) \mathbf{v}^{*} + \rho_{\mathbf{n}} x_{\mathbf{n}}^{\mathbf{c}} \mathbf{v}_{\mathbf{n}} \right) - q^{\mathbf{c}} = 0.$$

$$\mathbf{v}^* = \chi \frac{\mathbf{K} k_{r\mathbf{w}}}{\mu_{\mathbf{w}}} \Delta \rho \mathbf{g}.$$

Three <u>sub-grid parameters</u> calibrated to high-resolution simulations

χψω

Mykkeltvedt, T.S., et al. New Sub-grid Model for Convective Mixing in Field-Scale Storage Simulation. Transp Porous Med 152, 9, 2025

DRSDTCON Extended with regimes (SGM) - CO2 CONVECTIVE DISSOLUTION PARAMETERS (χ, ψ, ω)

+

Dynamic partitioning model

opm/simulators/flow/MixingRateControls.cpp

```
Scalar factor = 1.0;
Scalar X = (rs - rssat)
Scalar omega = 0.0;
const Scalar pCap = Opr
if ((rs >= (rssat * sq
    if (X > Psi) {
        factor = 0.0;
        omega = omegai
  else ·
    factor /= Xhi;
    deltaDensity = (sat)
      convectiveDrs_[c
           = permz * rs
           = factor * permz
                                                 deltaDensity) * gravity
```

opm/simulators/flow/FlowProblem.hpp

	+	opm/models/blackoil/blackoilconvectivemixingmodule.ht
* sg) / (rssat * (1.0 - sg));		
n::abs(pg – p);)) (pCap < 1e-12)) {		
ın;		
curatedDensity - co2Density);		
ompressedDofIdx]		
sat * max(0.0, deltaDensity) *	gravity / (<mark>so</mark> * visc a	* distZ * poro);

Effective component transport

opm/models/blackoil/blackoillocalresidual.hh opm/models/blackoil/blackoillocalresidualtpfa.hh opm/models/blackoil/blackoilintensivequantities.hh

opm/models/blackoil/blackoilconvectivemixingmodule.hh

- CO2 Convective Dissolution Parameters (χ , ψ , ω)

parameters (χ , ψ , ω) that controls

DRSDTCON

convective dissolution of CO₂ into in situ brine within a grid cell [Mykkeltvedt et. al. (2025)],

OIL	WATER
GAS	GAS
CO2STORE	CO2STORE
DISGAS	DISGASW
DRSDTCON	DRSDTCON
χ ψ ω option	χ ψ ω option
0.04 0.34 3.0E-09 ALL/	0.04 0.34 3.0E-09 ALL/

Sub-grid model parameters

Example: 2D small domain

Mykkeltvedt, T.S., et al. New Sub-grid Model for Convective Mixing in Field-Scale Storage Simulation. Transp Porous Med 152, 9, 2025

Example: 2D larger domain

Mykkeltvedt, T.S., et al. New Sub-grid Model for Convective Mixing in Field-Scale Storage Simulation. Transp Porous Med 152, 9, 2025

Example: SPE 11B

Initial conditions:

pure water at hydrostatic pressure and geothermal gradient pressure, set 1000 years before injection begins. **Injection conditions**:

50 years of injection, injection rate is approximately 1100 tons of CO₂ per year for each well

```
https://opm.github.io/pyopmspe11/
```


Example: SPE 11B

Example: SPE 11B

~12.5 hours

Example: Open Smeaheia field model

25 years injection and 500 years post-injection Layered heterogeneity in 10 km x 10 km domain

- Developed, implemented and tested a new sub-grid model that incorporates the impact of convective mixing on the cm-scale into fieldscale
- Through benchmark tests it is demonstrated that the model effectively replicates the behaviour of dissolved CO₂ in brine, even when using coarse resolution grids
- Easily implemented in field-scale simulation tools
 OPM Flow + DRSDTCON keyword

Allows for significantly coarser grids while retaining the effect of convective mixing in the simulations

Acknowledgements

- financial support from
 - the CLIMIT-Demo/Gassnova project 622059 and (HPCG)
 - the CLIMIT R&D project 336294 (ExpReCCS)