blackoilfoammodules.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef EWOMS_BLACK_OIL_FOAM_MODULE_HH
29#define EWOMS_BLACK_OIL_FOAM_MODULE_HH
30
31#include <dune/common/fvector.hh>
32
33#include <opm/common/OpmLog/OpmLog.hpp>
34
35#include <opm/input/eclipse/EclipseState/Phase.hpp>
36
39
42
43#include <cassert>
44#include <istream>
45#include <ostream>
46#include <stdexcept>
47#include <string>
48
49namespace Opm {
50
56template <class TypeTag, bool enableFoamV = getPropValue<TypeTag, Properties::EnableFoam>()>
58{
70
71 using Toolbox = MathToolbox<Evaluation>;
72
73 using TabulatedFunction = typename BlackOilFoamParams<Scalar>::TabulatedFunction;
74
75 static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx;
76 static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx;
77 static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
78 static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
79
80 static constexpr unsigned enableFoam = enableFoamV;
81
82 static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
83
84 enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
85
86public:
89 {
90 params_ = params;
91 }
92
96 static void registerParameters()
97 {}
98
102 static void registerOutputModules(Model&,
103 Simulator&)
104 {
105 if constexpr (enableFoam) {
106 if (Parameters::Get<Parameters::EnableVtkOutput>()) {
107 OpmLog::warning("VTK output requested, currently unsupported by the foam module.");
108 }
109 }
110 //model.addOutputModule(new VtkBlackOilFoamModule<TypeTag>(simulator));
111 }
112
113 static bool primaryVarApplies(unsigned pvIdx)
114 {
115 if constexpr (enableFoam) {
116 return pvIdx == foamConcentrationIdx;
117 }
118 else {
119 return false;
120 }
121 }
122
123 static std::string primaryVarName([[maybe_unused]] unsigned pvIdx)
124 {
125 assert(primaryVarApplies(pvIdx));
126 return "foam_concentration";
127 }
128
129 static Scalar primaryVarWeight([[maybe_unused]] unsigned pvIdx)
130 {
131 assert(primaryVarApplies(pvIdx));
132
133 // TODO: it may be beneficial to chose this differently.
134 return static_cast<Scalar>(1.0);
135 }
136
137 static bool eqApplies(unsigned eqIdx)
138 {
139 if constexpr (enableFoam) {
140 return eqIdx == contiFoamEqIdx;
141 }
142 else {
143 return false;
144 }
145 }
146
147 static std::string eqName([[maybe_unused]] unsigned eqIdx)
148 {
149 assert(eqApplies(eqIdx));
150
151 return "conti^foam";
152 }
153
154 static Scalar eqWeight([[maybe_unused]] unsigned eqIdx)
155 {
156 assert(eqApplies(eqIdx));
157
158 // TODO: it may be beneficial to chose this differently.
159 return static_cast<Scalar>(1.0);
160 }
161
162 // must be called after water storage is computed
163 template <class LhsEval>
164 static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
165 const IntensiveQuantities& intQuants)
166 {
167 if constexpr (enableFoam) {
168 const auto& fs = intQuants.fluidState();
169
170 LhsEval surfaceVolume = Toolbox::template decay<LhsEval>(intQuants.porosity());
171 if (params_.transport_phase_ == Phase::WATER) {
172 surfaceVolume *= Toolbox::template decay<LhsEval>(fs.saturation(waterPhaseIdx)) *
173 Toolbox::template decay<LhsEval>(fs.invB(waterPhaseIdx));
174 } else if (params_.transport_phase_ == Phase::GAS) {
175 surfaceVolume *= Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx)) *
176 Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx));
177 } else if (params_.transport_phase_ == Phase::SOLVENT) {
178 if constexpr (enableSolvent) {
179 surfaceVolume *= Toolbox::template decay<LhsEval>( intQuants.solventSaturation()) *
180 Toolbox::template decay<LhsEval>(intQuants.solventInverseFormationVolumeFactor());
181 }
182 } else {
183 throw std::runtime_error("Transport phase is GAS/WATER/SOLVENT");
184 }
185
186 // Avoid singular matrix if no gas is present.
187 surfaceVolume = max(surfaceVolume, 1e-10);
188
189 // Foam/surfactant in free phase.
190 const LhsEval freeFoam = surfaceVolume *
191 Toolbox::template decay<LhsEval>(intQuants.foamConcentration());
192
193 // Adsorbed foam/surfactant.
194 const LhsEval adsorbedFoam =
195 Toolbox::template decay<LhsEval>(1.0 - intQuants.porosity()) *
196 Toolbox::template decay<LhsEval>(intQuants.foamRockDensity()) *
197 Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed());
198
199 const LhsEval accumulationFoam = freeFoam + adsorbedFoam;
200 storage[contiFoamEqIdx] += accumulationFoam;
201 }
202 }
203
204 static void computeFlux([[maybe_unused]] RateVector& flux,
205 [[maybe_unused]] const ElementContext& elemCtx,
206 [[maybe_unused]] unsigned scvfIdx,
207 [[maybe_unused]] unsigned timeIdx)
208 {
209 if constexpr (enableFoam) {
210 const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
211 const unsigned inIdx = extQuants.interiorIndex();
212
213 // The effect of the mobility reduction factor is
214 // incorporated in the mobility for the relevant phase,
215 // so fluxes do not need modification here.
216 switch (transportPhase()) {
217 case Phase::WATER: {
218 const unsigned upIdx = extQuants.upstreamIndex(waterPhaseIdx);
219 const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
220 if (upIdx == inIdx) {
221 flux[contiFoamEqIdx] =
222 extQuants.volumeFlux(waterPhaseIdx) *
223 up.fluidState().invB(waterPhaseIdx) *
224 up.foamConcentration();
225 } else {
226 flux[contiFoamEqIdx] =
227 extQuants.volumeFlux(waterPhaseIdx) *
228 decay<Scalar>(up.fluidState().invB(waterPhaseIdx)) *
229 decay<Scalar>(up.foamConcentration());
230 }
231 break;
232 }
233 case Phase::GAS: {
234 const unsigned upIdx = extQuants.upstreamIndex(gasPhaseIdx);
235 const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
236 if (upIdx == inIdx) {
237 flux[contiFoamEqIdx] =
238 extQuants.volumeFlux(gasPhaseIdx) *
239 up.fluidState().invB(gasPhaseIdx) *
240 up.foamConcentration();
241 } else {
242 flux[contiFoamEqIdx] =
243 extQuants.volumeFlux(gasPhaseIdx) *
244 decay<Scalar>(up.fluidState().invB(gasPhaseIdx)) *
245 decay<Scalar>(up.foamConcentration());
246 }
247 break;
248 }
249 case Phase::SOLVENT:
250 if constexpr (enableSolvent) {
251 const unsigned upIdx = extQuants.solventUpstreamIndex();
252 const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
253 if (upIdx == inIdx) {
254 flux[contiFoamEqIdx] =
255 extQuants.solventVolumeFlux() *
256 up.solventInverseFormationVolumeFactor() *
257 up.foamConcentration();
258 } else {
259 flux[contiFoamEqIdx] =
260 extQuants.solventVolumeFlux() *
261 decay<Scalar>(up.solventInverseFormationVolumeFactor()) *
262 decay<Scalar>(up.foamConcentration());
263 }
264 } else {
265 throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
266 }
267 break;
268 default:
269 throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
270 }
271 }
272 }
273
277 static Scalar computeUpdateError(const PrimaryVariables&,
278 const EqVector&)
279 {
280 // do not consider the change of foam primary variables for convergence
281 // TODO: maybe this should be changed
282 return static_cast<Scalar>(0.0);
283 }
284
285 template <class DofEntity>
286 static void serializeEntity([[maybe_unused]] const Model& model,
287 [[maybe_unused]] std::ostream& outstream,
288 [[maybe_unused]] const DofEntity& dof)
289 {
290 if constexpr (enableFoam) {
291 const unsigned dofIdx = model.dofMapper().index(dof);
292 const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
293 outstream << priVars[foamConcentrationIdx];
294 }
295 }
296
297 template <class DofEntity>
298 static void deserializeEntity([[maybe_unused]] Model& model,
299 [[maybe_unused]] std::istream& instream,
300 [[maybe_unused]] const DofEntity& dof)
301 {
302 if constexpr (enableFoam) {
303 const unsigned dofIdx = model.dofMapper().index(dof);
304 PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
305 PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
306
307 instream >> priVars0[foamConcentrationIdx];
308
309 // set the primary variables for the beginning of the current time step.
310 priVars1[foamConcentrationIdx] = priVars0[foamConcentrationIdx];
311 }
312 }
313
314 static const Scalar foamRockDensity(const ElementContext& elemCtx,
315 unsigned scvIdx,
316 unsigned timeIdx)
317 {
318 const unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
319 return params_.foamRockDensity_[satnumRegionIdx];
320 }
321
322 static bool foamAllowDesorption(const ElementContext& elemCtx,
323 unsigned scvIdx,
324 unsigned timeIdx)
325 {
326 const unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
327 return params_.foamAllowDesorption_[satnumRegionIdx];
328 }
329
330 static const TabulatedFunction& adsorbedFoamTable(const ElementContext& elemCtx,
331 unsigned scvIdx,
332 unsigned timeIdx)
333 {
334 const unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
335 return params_.adsorbedFoamTable_[satnumRegionIdx];
336 }
337
338 static const TabulatedFunction& gasMobilityMultiplierTable(const ElementContext& elemCtx,
339 unsigned scvIdx,
340 unsigned timeIdx)
341 {
342 const unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
343 return params_.gasMobilityMultiplierTable_[pvtnumRegionIdx];
344 }
345
347 foamCoefficients(const ElementContext& elemCtx,
348 const unsigned scvIdx,
349 const unsigned timeIdx)
350 {
351 const unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
352 return params_.foamCoefficients_[satnumRegionIdx];
353 }
354
355 static Phase transportPhase()
356 { return params_.transport_phase_; }
357
358private:
359 static BlackOilFoamParams<Scalar> params_;
360};
361
362template <class TypeTag, bool enableFoam>
363BlackOilFoamParams<typename BlackOilFoamModule<TypeTag, enableFoam>::Scalar>
364BlackOilFoamModule<TypeTag, enableFoam>::params_;
365
366template <class TypeTag, bool enableFoam>
368
376template <class TypeTag>
377class BlackOilFoamIntensiveQuantities<TypeTag, /*enableFoam=*/true>
378{
380
388
390
391 enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
392
393 static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
394 static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
395 static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
396 static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
397
398public:
404 void foamPropertiesUpdate_(const ElementContext& elemCtx,
405 unsigned dofIdx,
406 unsigned timeIdx)
407 {
408 const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
409 foamConcentration_ = priVars.makeEvaluation(foamConcentrationIdx, timeIdx);
410 const auto& fs = asImp_().fluidState_;
411
412 // Compute gas mobility reduction factor
413 Evaluation mobilityReductionFactor = 1.0;
414 if constexpr (false) {
415 // The functional model is used.
416 // TODO: allow this model.
417 // In order to do this we must allow transport to be in the water phase, not just the gas phase.
418 const auto& foamCoefficients = FoamModule::foamCoefficients(elemCtx, dofIdx, timeIdx);
419
420 const Scalar fm_mob = foamCoefficients.fm_mob;
421
422 const Scalar fm_surf = foamCoefficients.fm_surf;
423 const Scalar ep_surf = foamCoefficients.ep_surf;
424
425 const Scalar fm_oil = foamCoefficients.fm_oil;
426 const Scalar fl_oil = foamCoefficients.fl_oil;
427 const Scalar ep_oil = foamCoefficients.ep_oil;
428
429 const Scalar fm_dry = foamCoefficients.fm_dry;
430 const Scalar ep_dry = foamCoefficients.ep_dry;
431
432 const Scalar fm_cap = foamCoefficients.fm_cap;
433 const Scalar ep_cap = foamCoefficients.ep_cap;
434
435 const Evaluation C_surf = foamConcentration_;
436 const Evaluation Ca = 1e10; // TODO: replace with proper capillary number.
437 const Evaluation S_o = fs.saturation(oilPhaseIdx);
438 const Evaluation S_w = fs.saturation(waterPhaseIdx);
439
440 const Evaluation F1 = pow(C_surf / fm_surf, ep_surf);
441 const Evaluation F2 = pow((fm_oil - S_o) / (fm_oil - fl_oil), ep_oil);
442 const Evaluation F3 = pow(fm_cap / Ca, ep_cap);
443 const Evaluation F7 = 0.5 + atan(ep_dry * (S_w - fm_dry)) / M_PI;
444
445 mobilityReductionFactor = 1. / (1. + fm_mob * F1 * F2 * F3 * F7);
446 } else {
447 // The tabular model is used.
448 // Note that the current implementation only includes the effect of foam concentration (FOAMMOB),
449 // and not the optional pressure dependence (FOAMMOBP) or shear dependence (FOAMMOBS).
450 const auto& gasMobilityMultiplier = FoamModule::gasMobilityMultiplierTable(elemCtx, dofIdx, timeIdx);
451 mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true);
452 }
453
454 // adjust mobility
455 switch (FoamModule::transportPhase()) {
456 case Phase::WATER:
457 asImp_().mobility_[waterPhaseIdx] *= mobilityReductionFactor;
458 break;
459 case Phase::GAS:
460 asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor;
461 break;
462 case Phase::SOLVENT:
463 if constexpr (enableSolvent) {
464 asImp_().solventMobility_ *= mobilityReductionFactor;
465 } else {
466 throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
467 }
468 break;
469 default:
470 throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
471 }
472
473 foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx);
474
475 const auto& adsorbedFoamTable = FoamModule::adsorbedFoamTable(elemCtx, dofIdx, timeIdx);
476 foamAdsorbed_ = adsorbedFoamTable.eval(foamConcentration_, /*extrapolate=*/true);
477 if (!FoamModule::foamAllowDesorption(elemCtx, dofIdx, timeIdx)) {
478 throw std::runtime_error("Foam module does not support the 'no desorption' option.");
479 }
480 }
481
482 const Evaluation& foamConcentration() const
483 { return foamConcentration_; }
484
485 Scalar foamRockDensity() const
486 { return foamRockDensity_; }
487
488 const Evaluation& foamAdsorbed() const
489 { return foamAdsorbed_; }
490
491protected:
492 Implementation& asImp_()
493 { return *static_cast<Implementation*>(this); }
494
497 Evaluation foamAdsorbed_;
498};
499
500template <class TypeTag>
502{
506
507public:
508 void foamPropertiesUpdate_(const ElementContext&,
509 unsigned,
510 unsigned)
511 {}
512
513 const Evaluation& foamConcentration() const
514 { throw std::runtime_error("foamConcentration() called but foam is disabled"); }
515
516 Scalar foamRockDensity() const
517 { throw std::runtime_error("foamRockDensity() called but foam is disabled"); }
518
519 Scalar foamAdsorbed() const
520 { throw std::runtime_error("foamAdsorbed() called but foam is disabled"); }
521};
522
523} // namespace Opm
524
525#endif
Contains the parameters to extend the black-oil model to include the effects of foam.
Declares the properties required by the black oil model.
Scalar foamRockDensity() const
Definition: blackoilfoammodules.hh:516
const Evaluation & foamConcentration() const
Definition: blackoilfoammodules.hh:513
void foamPropertiesUpdate_(const ElementContext &, unsigned, unsigned)
Definition: blackoilfoammodules.hh:508
Scalar foamAdsorbed() const
Definition: blackoilfoammodules.hh:519
Evaluation foamConcentration_
Definition: blackoilfoammodules.hh:495
void foamPropertiesUpdate_(const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx)
Update the intensive properties needed to handle polymers from the primary variables.
Definition: blackoilfoammodules.hh:404
const Evaluation & foamAdsorbed() const
Definition: blackoilfoammodules.hh:488
Scalar foamRockDensity() const
Definition: blackoilfoammodules.hh:485
Evaluation foamAdsorbed_
Definition: blackoilfoammodules.hh:497
Implementation & asImp_()
Definition: blackoilfoammodules.hh:492
const Evaluation & foamConcentration() const
Definition: blackoilfoammodules.hh:482
Scalar foamRockDensity_
Definition: blackoilfoammodules.hh:496
Provides the volumetric quantities required for the equations needed by the polymers extension of the...
Definition: blackoilfoammodules.hh:367
Contains the high level supplements required to extend the black oil model to include the effects of ...
Definition: blackoilfoammodules.hh:58
static bool eqApplies(unsigned eqIdx)
Definition: blackoilfoammodules.hh:137
static void registerOutputModules(Model &, Simulator &)
Register all foam specific VTK and ECL output modules.
Definition: blackoilfoammodules.hh:102
static void registerParameters()
Register all run-time parameters for the black-oil foam module.
Definition: blackoilfoammodules.hh:96
static std::string primaryVarName(unsigned pvIdx)
Definition: blackoilfoammodules.hh:123
static Scalar eqWeight(unsigned eqIdx)
Definition: blackoilfoammodules.hh:154
static void deserializeEntity(Model &model, std::istream &instream, const DofEntity &dof)
Definition: blackoilfoammodules.hh:298
static void setParams(BlackOilFoamParams< Scalar > &&params)
Set parameters.
Definition: blackoilfoammodules.hh:88
static std::string eqName(unsigned eqIdx)
Definition: blackoilfoammodules.hh:147
static bool primaryVarApplies(unsigned pvIdx)
Definition: blackoilfoammodules.hh:113
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilfoammodules.hh:164
static bool foamAllowDesorption(const ElementContext &elemCtx, unsigned scvIdx, unsigned timeIdx)
Definition: blackoilfoammodules.hh:322
static Scalar primaryVarWeight(unsigned pvIdx)
Definition: blackoilfoammodules.hh:129
static const BlackOilFoamParams< Scalar >::FoamCoefficients & foamCoefficients(const ElementContext &elemCtx, const unsigned scvIdx, const unsigned timeIdx)
Definition: blackoilfoammodules.hh:347
static void computeFlux(RateVector &flux, const ElementContext &elemCtx, unsigned scvfIdx, unsigned timeIdx)
Definition: blackoilfoammodules.hh:204
static Scalar computeUpdateError(const PrimaryVariables &, const EqVector &)
Return how much a Newton-Raphson update is considered an error.
Definition: blackoilfoammodules.hh:277
static const Scalar foamRockDensity(const ElementContext &elemCtx, unsigned scvIdx, unsigned timeIdx)
Definition: blackoilfoammodules.hh:314
static void serializeEntity(const Model &model, std::ostream &outstream, const DofEntity &dof)
Definition: blackoilfoammodules.hh:286
static const TabulatedFunction & adsorbedFoamTable(const ElementContext &elemCtx, unsigned scvIdx, unsigned timeIdx)
Definition: blackoilfoammodules.hh:330
static Phase transportPhase()
Definition: blackoilfoammodules.hh:355
static const TabulatedFunction & gasMobilityMultiplierTable(const ElementContext &elemCtx, unsigned scvIdx, unsigned timeIdx)
Definition: blackoilfoammodules.hh:338
Declare the properties used by the infrastructure code of the finite volume discretizations.
Declare the properties used by the infrastructure code of the finite volume discretizations.
Definition: blackoilbioeffectsmodules.hh:43
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:233
Definition: blackoilfoamparams.hpp:64
Struct holding the parameters for the BlackoilFoamModule class.
Definition: blackoilfoamparams.hpp:46
Tabulated1DFunction< Scalar > TabulatedFunction
Definition: blackoilfoamparams.hpp:47