blackoilintensivequantities.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
29#define EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
30
31#include <dune/common/fmatrix.hh>
32
33#include <opm/common/TimingMacros.hpp>
34
35#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
36
37#include <opm/material/fluidstates/BlackOilFluidState.hpp>
38#include <opm/material/common/Valgrind.hpp>
39
52
53#include <opm/utility/CopyablePtr.hpp>
54
55#include <array>
56#include <cassert>
57#include <cstring>
58#include <stdexcept>
59#include <utility>
60#include <vector>
61
62namespace Opm {
63
71template <class TypeTag>
73 : public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
74 , public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
75 , public BlackOilDiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
76 , public BlackOilDispersionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDispersion>() >
77 , public BlackOilSolventIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableSolvent>()>
78 , public BlackOilExtboIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableExtbo>()>
79 , public BlackOilPolymerIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnablePolymer>()>
80 , public BlackOilFoamIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableFoam>()>
81 , public BlackOilBrineIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableBrine>()>
82 , public BlackOilEnergyIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>()>
83 , public BlackOilBioeffectsIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableBioeffects>()>
84 , public BlackOilConvectiveMixingIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableConvectiveMixing>()>
85{
88
97
98 enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
99 enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
100 enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
101 enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
102 enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
103 enum { enableVapwat = getPropValue<TypeTag, Properties::EnableVapwat>() };
104 enum { enableDisgasInWater = getPropValue<TypeTag, Properties::EnableDisgasInWater>() };
105 enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
106 enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
107 enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
108 enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
109 enum { enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>() };
110 enum { enableConvectiveMixing = getPropValue<TypeTag, Properties::EnableConvectiveMixing>() };
111 enum { enableBioeffects = getPropValue<TypeTag, Properties::EnableBioeffects>() };
112 enum { enableMICP = Indices::enableMICP };
113 enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
114 enum { waterCompIdx = FluidSystem::waterCompIdx };
115 enum { oilCompIdx = FluidSystem::oilCompIdx };
116 enum { gasCompIdx = FluidSystem::gasCompIdx };
117 enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
118 enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
119 enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
120 enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
121
122 static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
123 static constexpr bool waterEnabled = Indices::waterEnabled;
124 static constexpr bool gasEnabled = Indices::gasEnabled;
125 static constexpr bool oilEnabled = Indices::oilEnabled;
126
127 using Toolbox = MathToolbox<Evaluation>;
128 using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
131
132 using DirectionalMobilityPtr = Utility::CopyablePtr<DirectionalMobility<TypeTag>>;
137
138public:
139 using FluidState = BlackOilFluidState<Evaluation,
140 FluidSystem,
141 enableTemperature,
142 enableEnergy,
143 compositionSwitchEnabled,
144 enableVapwat,
145 enableBrine,
146 enableSaltPrecipitation,
147 enableDisgasInWater,
148 Indices::numPhases>;
149 using ScalarFluidState = BlackOilFluidState<Scalar,
150 FluidSystem,
151 enableTemperature,
152 enableEnergy,
153 compositionSwitchEnabled,
154 enableVapwat,
155 enableBrine,
156 enableSaltPrecipitation,
157 enableDisgasInWater,
158 Indices::numPhases>;
160
162 {
163 if constexpr (compositionSwitchEnabled) {
164 fluidState_.setRs(0.0);
165 fluidState_.setRv(0.0);
166 }
167 if constexpr (enableVapwat) {
168 fluidState_.setRvw(0.0);
169 }
170 if constexpr (enableDisgasInWater) {
171 fluidState_.setRsw(0.0);
172 }
173 }
175
177
178 void updateTempSalt(const Problem& problem,
179 const PrimaryVariables& priVars,
180 const unsigned globalSpaceIdx,
181 const unsigned timeIdx,
182 const LinearizationType& lintype)
183 {
184 if constexpr (enableTemperature || enableEnergy) {
185 asImp_().updateTemperature_(problem, priVars, globalSpaceIdx, timeIdx, lintype);
186 }
187
188 if constexpr (enableBrine) {
189 asImp_().updateSaltConcentration_(priVars, timeIdx, lintype);
190 }
191 }
192
193 void updateSaturations(const PrimaryVariables& priVars,
194 const unsigned timeIdx,
195 [[maybe_unused]] const LinearizationType lintype)
196 {
197 // extract the water and the gas saturations for convenience
198 Evaluation Sw = 0.0;
199 if constexpr (waterEnabled) {
200 if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
201 assert(Indices::waterSwitchIdx >= 0);
202 if constexpr (Indices::waterSwitchIdx >= 0) {
203 Sw = priVars.makeEvaluation(Indices::waterSwitchIdx, timeIdx);
204 }
205 }
206 else if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Rsw ||
207 priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Disabled)
208 {
209 // water is enabled but is not a primary variable i.e. one component/phase case
210 // or two-phase water + gas with only water present
211 Sw = 1.0;
212 } // else i.e. for MeaningWater() = Rvw, Sw is still 0.0;
213 }
214 Evaluation Sg = 0.0;
215 if constexpr (gasEnabled) {
216 if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg) {
217 assert(Indices::compositionSwitchIdx >= 0);
218 if constexpr (compositionSwitchEnabled) {
219 Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
220 }
221 }
222 else if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
223 Sg = 1.0 - Sw;
224 }
225 else if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Disabled) {
226 if constexpr (waterEnabled) {
227 Sg = 1.0 - Sw; // two phase water + gas
228 } else {
229 // one phase case
230 Sg = 1.0;
231 }
232 }
233 }
234 Valgrind::CheckDefined(Sg);
235 Valgrind::CheckDefined(Sw);
236
237 Evaluation So = 1.0 - Sw - Sg;
238
239 // deal with solvent
240 if constexpr (enableSolvent) {
241 if (priVars.primaryVarsMeaningSolvent() == PrimaryVariables::SolventMeaning::Ss) {
242 if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
243 So -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
244 }
245 else if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
246 Sg -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
247 }
248 }
249 }
250
251 if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
252 fluidState_.setSaturation(waterPhaseIdx, Sw);
253 }
254
255 if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
256 fluidState_.setSaturation(gasPhaseIdx, Sg);
257 }
258
259 if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
260 fluidState_.setSaturation(oilPhaseIdx, So);
261 }
262 }
263
264 template <class ...Args>
266 const PrimaryVariables& priVars,
267 const unsigned globalSpaceIdx,
268 const unsigned timeIdx,
269 const LinearizationType& lintype)
270 {
271
272 // Solvent saturation manipulation:
273 // After this, gas saturation will actually be (gas sat + solvent sat)
274 // until set back to just gas saturation in the corresponding call to
275 // solventPostSatFuncUpdate_() further down.
276 if constexpr (enableSolvent) {
277 asImp_().solventPreSatFuncUpdate_(priVars, timeIdx, lintype);
278 }
279
280 // Phase relperms.
281 problem.template updateRelperms<FluidState, Args...>(mobility_, dirMob_, fluidState_, globalSpaceIdx);
282
283 // now we compute all phase pressures
284 using EvalArr = std::array<Evaluation, numPhases>;
285 EvalArr pC;
286 const auto& materialParams = problem.materialLawParams(globalSpaceIdx);
287 MaterialLaw::template capillaryPressures<EvalArr, FluidState, Args...>(pC, materialParams, fluidState_);
288
289 // scaling the capillary pressure due to porosity changes
290 if constexpr (enableBrine) {
292 priVars.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp)
293 {
294 const unsigned satnumRegionIdx = problem.satnumRegionIndex(globalSpaceIdx);
295 const Evaluation Sp = priVars.makeEvaluation(Indices::saltConcentrationIdx, timeIdx);
296 const Evaluation porosityFactor = min(1.0 - Sp, 1.0); //phi/phi_0
297 const auto& pcfactTable = BrineModule::pcfactTable(satnumRegionIdx);
298 const Evaluation pcFactor = pcfactTable.eval(porosityFactor, /*extrapolation=*/true);
299 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
300 if (FluidSystem::phaseIsActive(phaseIdx)) {
301 pC[phaseIdx] *= pcFactor;
302 }
303 }
304 }
305 }
306 else if constexpr (enableBioeffects) {
307 if (BioeffectsModule::hasPcfactTables() && referencePorosity_ > 0) {
308 unsigned satnumRegionIdx = problem.satnumRegionIndex(globalSpaceIdx);
309 const Evaluation Sb = priVars.makeEvaluation(Indices::biofilmVolumeFractionIdx, timeIdx);
310 const Evaluation porosityFactor = min(1.0 - Sb/referencePorosity_, 1.0); //phi/phi_0
311 const auto& pcfactTable = BioeffectsModule::pcfactTable(satnumRegionIdx);
312 const Evaluation pcFactor = pcfactTable.eval(porosityFactor, /*extrapolation=*/true);
313 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
314 if (FluidSystem::phaseIsActive(phaseIdx)) {
315 pC[phaseIdx] *= pcFactor;
316 }
317 }
318 }
319 }
320
321 // oil is the reference phase for pressure
322 if (priVars.primaryVarsMeaningPressure() == PrimaryVariables::PressureMeaning::Pg) {
323 const Evaluation& pg = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
324 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
325 if (FluidSystem::phaseIsActive(phaseIdx)) {
326 fluidState_.setPressure(phaseIdx, pg + (pC[phaseIdx] - pC[gasPhaseIdx]));
327 }
328 }
329 }
330 else if (priVars.primaryVarsMeaningPressure() == PrimaryVariables::PressureMeaning::Pw) {
331 const Evaluation& pw = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
332 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
333 if (FluidSystem::phaseIsActive(phaseIdx)) {
334 fluidState_.setPressure(phaseIdx, pw + (pC[phaseIdx] - pC[waterPhaseIdx]));
335 }
336 }
337 }
338 else {
339 assert(FluidSystem::phaseIsActive(oilPhaseIdx));
340 const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
341 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
342 if (FluidSystem::phaseIsActive(phaseIdx)) {
343 fluidState_.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
344 }
345 }
346 }
347
348 // Update the Saturation functions for the blackoil solvent module.
349 // Including setting gas saturation back to hydrocarbon gas saturation.
350 // Note that this depend on the pressures, so it must be called AFTER the pressures
351 // have been updated.
352 if constexpr (enableSolvent) {
353 asImp_().solventPostSatFuncUpdate_(problem, priVars, globalSpaceIdx, timeIdx, lintype);
354 }
355 }
356
357 void updateRsRvRsw(const Problem& problem, const PrimaryVariables& priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
358 {
359 const unsigned pvtRegionIdx = priVars.pvtRegionIndex();
360
361 const Scalar RvMax = FluidSystem::enableVaporizedOil()
362 ? problem.maxOilVaporizationFactor(timeIdx, globalSpaceIdx)
363 : 0.0;
364 const Scalar RsMax = FluidSystem::enableDissolvedGas()
365 ? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
366 : 0.0;
367 const Scalar RswMax = FluidSystem::enableDissolvedGasInWater()
368 ? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
369 : 0.0;
370
371 Evaluation SoMax = 0.0;
372 if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
373 SoMax = max(fluidState_.saturation(oilPhaseIdx),
374 problem.maxOilSaturation(globalSpaceIdx));
375 }
376
377 // take the meaning of the switching primary variable into account for the gas
378 // and oil phase compositions
379
380 if constexpr (compositionSwitchEnabled) {
381 if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rs) {
382 const auto& Rs = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
383 fluidState_.setRs(Rs);
384 }
385 else {
386 if (FluidSystem::enableDissolvedGas()) { // Add So > 0? i.e. if only water set rs = 0)
387 const Evaluation& RsSat = enableExtbo ? asImp_().rs() :
388 FluidSystem::saturatedDissolutionFactor(fluidState_,
389 oilPhaseIdx,
390 pvtRegionIdx,
391 SoMax);
392 fluidState_.setRs(min(RsMax, RsSat));
393 }
394 else {
395 fluidState_.setRs(0.0);
396 }
397 }
398
399 if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
400 const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
401 fluidState_.setRv(Rv);
402 }
403 else {
404 if (FluidSystem::enableVaporizedOil() ) { // Add Sg > 0? i.e. if only water set rv = 0)
405 const Evaluation& RvSat = enableExtbo ? asImp_().rv() :
406 FluidSystem::saturatedDissolutionFactor(fluidState_,
407 gasPhaseIdx,
408 pvtRegionIdx,
409 SoMax);
410 fluidState_.setRv(min(RvMax, RvSat));
411 }
412 else {
413 fluidState_.setRv(0.0);
414 }
415 }
416 }
417
418 if constexpr (enableVapwat) {
419 if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Rvw) {
420 const auto& Rvw = priVars.makeEvaluation(Indices::waterSwitchIdx, timeIdx);
421 fluidState_.setRvw(Rvw);
422 }
423 else {
424 if (FluidSystem::enableVaporizedWater()) { // Add Sg > 0? i.e. if only water set rv = 0)
425 const Evaluation& RvwSat = FluidSystem::saturatedVaporizationFactor(fluidState_,
426 gasPhaseIdx,
427 pvtRegionIdx);
428 fluidState_.setRvw(RvwSat);
429 }
430 }
431 }
432
433 if constexpr (enableDisgasInWater) {
434 if (priVars.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Rsw) {
435 const auto& Rsw = priVars.makeEvaluation(Indices::waterSwitchIdx, timeIdx);
436 fluidState_.setRsw(Rsw);
437 }
438 else {
439 if (FluidSystem::enableDissolvedGasInWater()) {
440 const Evaluation& RswSat = FluidSystem::saturatedDissolutionFactor(fluidState_,
441 waterPhaseIdx,
442 pvtRegionIdx);
443 fluidState_.setRsw(min(RswMax, RswSat));
444 }
445 }
446 }
447 }
448
450 {
451 OPM_TIMEBLOCK_LOCAL(updateMobilityAndInvB, Subsystem::PvtProps);
452 const unsigned pvtRegionIdx = fluidState_.pvtRegionIndex();
453
454 // compute the phase densities and transform the phase permeabilities into mobilities
455 int nmobilities = 1;
456 constexpr int max_nmobilities = 4;
457 std::array<std::array<Evaluation, numPhases>*, max_nmobilities> mobilities = { &mobility_};
458 if (dirMob_) {
459 for (int i = 0; i < 3; ++i) {
460 mobilities[nmobilities] = &(dirMob_->getArray(i));
461 ++nmobilities;
462 }
463 }
464 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
465 if (!FluidSystem::phaseIsActive(phaseIdx)) {
466 continue;
467 }
468 const auto [b, mu] = FluidSystem::inverseFormationVolumeFactorAndViscosity(fluidState_, phaseIdx, pvtRegionIdx);
469 fluidState_.setInvB(phaseIdx, b);
470 for (int i = 0; i < nmobilities; ++i) {
471 if (enableExtbo && phaseIdx == oilPhaseIdx) {
472 (*mobilities[i])[phaseIdx] /= asImp_().oilViscosity();
473 }
474 else if (enableExtbo && phaseIdx == gasPhaseIdx) {
475 (*mobilities[i])[phaseIdx] /= asImp_().gasViscosity();
476 }
477 else {
478 (*mobilities[i])[phaseIdx] /= mu;
479 }
480 }
481 }
482 Valgrind::CheckDefined(mobility_);
483 }
484
486 {
487 const unsigned pvtRegionIdx = fluidState_.pvtRegionIndex();
488
489 // calculate the phase densities
490 Evaluation rho;
491 if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
492 rho = fluidState_.invB(waterPhaseIdx);
493 rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
494 if (FluidSystem::enableDissolvedGasInWater()) {
495 rho += fluidState_.invB(waterPhaseIdx) *
496 fluidState_.Rsw() *
497 FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
498 }
499 fluidState_.setDensity(waterPhaseIdx, rho);
500 }
501
502 if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
503 rho = fluidState_.invB(gasPhaseIdx);
504 rho *= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
505 if (FluidSystem::enableVaporizedOil()) {
506 rho += fluidState_.invB(gasPhaseIdx) *
507 fluidState_.Rv() *
508 FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
509 }
510 if (FluidSystem::enableVaporizedWater()) {
511 rho += fluidState_.invB(gasPhaseIdx) *
512 fluidState_.Rvw() *
513 FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
514 }
515 fluidState_.setDensity(gasPhaseIdx, rho);
516 }
517
518 if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
519 rho = fluidState_.invB(oilPhaseIdx);
520 rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
521 if (FluidSystem::enableDissolvedGas()) {
522 rho += fluidState_.invB(oilPhaseIdx) *
523 fluidState_.Rs() *
524 FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
525 }
526 fluidState_.setDensity(oilPhaseIdx, rho);
527 }
528 }
529
530 void updatePorosity(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
531 {
532 const auto& problem = elemCtx.problem();
533 const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
534 const unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
535 // Retrieve the reference porosity from the problem.
536 referencePorosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
537 // Account for other effects.
538 this->updatePorosityImpl(problem, priVars, globalSpaceIdx, timeIdx);
539 }
540
541 void updatePorosity(const Problem& problem, const PrimaryVariables& priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
542 {
543 // Retrieve the reference porosity from the problem.
544 referencePorosity_ = problem.porosity(globalSpaceIdx, timeIdx);
545 // Account for other effects.
546 this->updatePorosityImpl(problem, priVars, globalSpaceIdx, timeIdx);
547 }
548
549 void updatePorosityImpl(const Problem& problem, const PrimaryVariables& priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
550 {
551 const auto& linearizationType = problem.model().linearizer().getLinearizationType();
552
553 // Start from the reference porosity.
554 porosity_ = referencePorosity_;
555
556 // the porosity must be modified by the compressibility of the
557 // rock...
558 const Scalar rockCompressibility = problem.rockCompressibility(globalSpaceIdx);
559 if (rockCompressibility > 0.0) {
560 const Scalar rockRefPressure = problem.rockReferencePressure(globalSpaceIdx);
561 Evaluation x;
562 if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
563 x = rockCompressibility * (fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
564 }
565 else if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
566 x = rockCompressibility * (fluidState_.pressure(waterPhaseIdx) - rockRefPressure);
567 }
568 else {
569 x = rockCompressibility * (fluidState_.pressure(gasPhaseIdx) - rockRefPressure);
570 }
571 porosity_ *= 1.0 + x + 0.5 * x * x;
572 }
573
574 // deal with water induced rock compaction
575 porosity_ *= problem.template rockCompPoroMultiplier<Evaluation>(*this, globalSpaceIdx);
576
577 // deal with bioeffects (minimum porosity of 1e-8 to prevent numerical issues)
578 if constexpr (enableBioeffects) {
579 const Evaluation biofilm_ = priVars.makeEvaluation(Indices::biofilmVolumeFractionIdx,
580 timeIdx, linearizationType);
581 Evaluation calcite_ = 0.0;
582 if constexpr (enableMICP) {
583 calcite_ = priVars.makeEvaluation(Indices::calciteVolumeFractionIdx, timeIdx, linearizationType);
584 }
585 porosity_ -= min(biofilm_ + calcite_, referencePorosity_ - 1e-8);
586 }
587
588 // deal with salt-precipitation
589 if (enableSaltPrecipitation && priVars.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
590 const Evaluation Sp = priVars.makeEvaluation(Indices::saltConcentrationIdx, timeIdx);
591 porosity_ *= (1.0 - Sp);
592 }
593 }
594
596 {
597 // some safety checks in debug mode
598 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
599 if (!FluidSystem::phaseIsActive(phaseIdx)) {
600 continue;
601 }
602
603 assert(isfinite(fluidState_.density(phaseIdx)));
604 assert(isfinite(fluidState_.saturation(phaseIdx)));
605 assert(isfinite(fluidState_.temperature(phaseIdx)));
606 assert(isfinite(fluidState_.pressure(phaseIdx)));
607 assert(isfinite(fluidState_.invB(phaseIdx)));
608 }
609 assert(isfinite(fluidState_.Rs()));
610 assert(isfinite(fluidState_.Rv()));
611 }
612
616 template <class ...Args>
617 void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
618 {
619 ParentType::update(elemCtx, dofIdx, timeIdx);
620 const auto& problem = elemCtx.problem();
621 const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
622 const unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
623
624 updateCommonPart<Args...>(problem, priVars, globalSpaceIdx, timeIdx);
625
626 updatePorosity(elemCtx, dofIdx, timeIdx);
627
628 // Below: things I want to move to elemCtx-less versions but have not done yet.
629
630 if constexpr (enableSolvent) {
631 asImp_().solventPvtUpdate_(elemCtx, dofIdx, timeIdx);
632 }
633 if constexpr (enableExtbo) {
634 asImp_().zPvtUpdate_();
635 }
636 if constexpr (enablePolymer) {
637 asImp_().polymerPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
638 }
639 if constexpr (enableEnergy) {
640 asImp_().updateEnergyQuantities_(elemCtx, dofIdx, timeIdx);
641 }
642 if constexpr (enableFoam) {
643 asImp_().foamPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
644 }
645 if constexpr (enableBioeffects) {
646 asImp_().bioeffectsPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
647 }
648 if constexpr (enableBrine) {
649 asImp_().saltPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
650 }
651 if constexpr (enableConvectiveMixing) {
652 // The ifs are here is to avoid extra calculations for
653 // cases with dry runs and without CO2STORE and DRSDTCON.
654 if (!problem.simulator().vanguard().eclState().getIOConfig().initOnly()) {
655 if (problem.simulator().vanguard().eclState().runspec().co2Storage()) {
656 if (problem.drsdtconIsActive(globalSpaceIdx, problem.simulator().episodeIndex())) {
657 asImp_().updateSaturatedDissolutionFactor_();
658 }
659 }
660 }
661 }
662
663 // update the quantities which are required by the chosen
664 // velocity model
665 FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
666
667 // update the diffusion specific quantities of the intensive quantities
668 if constexpr (enableDiffusion) {
669 DiffusionIntensiveQuantities::update_(fluidState_, priVars.pvtRegionIndex(), elemCtx, dofIdx, timeIdx);
670 }
671
672 // update the dispersion specific quantities of the intensive quantities
673 if constexpr (enableDispersion) {
674 DispersionIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
675 }
676 }
677
678 template <class ...Args>
679 void update(const Problem& problem, const PrimaryVariables& priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
680 {
681 // This is the version of update() that does not use any ElementContext.
682 // It is limited by some modules that are not yet adapted to that.
683 static_assert(!enableSolvent);
684 static_assert(!enableExtbo);
685 static_assert(!enablePolymer);
686 static_assert(!enableEnergy);
687 static_assert(!enableFoam);
688 static_assert(!enableMICP);
689 static_assert(!enableBrine);
690 static_assert(!enableDiffusion);
691 static_assert(!enableDispersion);
692
693 this->extrusionFactor_ = 1.0;// to avoid fixing parent update
694 updateCommonPart<Args...>(problem, priVars, globalSpaceIdx, timeIdx);
695 // Porosity requires separate calls so this can be instantiated with ReservoirProblem from the examples/ directory.
696 updatePorosity(problem, priVars, globalSpaceIdx, timeIdx);
697
698 // TODO: Here we should do the parts for solvent etc. at the bottom of the other update() function.
699 }
700
701 // This function updated the parts that are common to the IntensiveQuantities regardless of extensions used.
702 template <class ...Args>
703 void updateCommonPart(const Problem& problem, const PrimaryVariables& priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
704 {
705 OPM_TIMEBLOCK_LOCAL(blackoilIntensiveQuanititiesUpdate, Subsystem::SatProps | Subsystem::PvtProps);
706
707 const auto& linearizationType = problem.model().linearizer().getLinearizationType();
708 const unsigned pvtRegionIdx = priVars.pvtRegionIndex();
709
710 fluidState_.setPvtRegionIndex(pvtRegionIdx);
711
712 updateTempSalt(problem, priVars, globalSpaceIdx, timeIdx, linearizationType);
713 updateSaturations(priVars, timeIdx, linearizationType);
714 updateRelpermAndPressures<Args...>(problem, priVars, globalSpaceIdx, timeIdx, linearizationType);
715
716 // update extBO parameters
717 if constexpr (enableExtbo) {
718 asImp_().zFractionUpdate_(priVars, timeIdx);
719 }
720
721 updateRsRvRsw(problem, priVars, globalSpaceIdx, timeIdx);
724
725 rockCompTransMultiplier_ = problem.template rockCompTransMultiplier<Evaluation>(*this, globalSpaceIdx);
726
727#ifndef NDEBUG
729#endif
730 }
731
735 const FluidState& fluidState() const
736 { return fluidState_; }
737
741 const Evaluation& mobility(unsigned phaseIdx) const
742 { return mobility_[phaseIdx]; }
743
744 const Evaluation& mobility(unsigned phaseIdx, FaceDir::DirEnum facedir) const
745 {
746 using Dir = FaceDir::DirEnum;
747 if (dirMob_) {
748 switch (facedir) {
749 case Dir::XMinus:
750 case Dir::XPlus:
751 return dirMob_->getArray(0)[phaseIdx];
752 case Dir::YMinus:
753 case Dir::YPlus:
754 return dirMob_->getArray(1)[phaseIdx];
755 case Dir::ZMinus:
756 case Dir::ZPlus:
757 return dirMob_->getArray(2)[phaseIdx];
758 default:
759 throw std::runtime_error("Unexpected face direction");
760 }
761 }
762 else {
763 return mobility_[phaseIdx];
764 }
765 }
766
770 const Evaluation& porosity() const
771 { return porosity_; }
772
776 const Evaluation& rockCompTransMultiplier() const
777 { return rockCompTransMultiplier_; }
778
786 auto pvtRegionIndex() const -> decltype(std::declval<FluidState>().pvtRegionIndex())
787 { return fluidState_.pvtRegionIndex(); }
788
792 Evaluation relativePermeability(unsigned phaseIdx) const
793 {
794 // warning: slow
795 return fluidState_.viscosity(phaseIdx) * mobility(phaseIdx);
796 }
797
804 Scalar referencePorosity() const
805 { return referencePorosity_; }
806
807 const Evaluation& permFactor() const
808 {
809 if constexpr (enableBioeffects) {
811 }
812 else if constexpr (enableSaltPrecipitation) {
813 return BrineIntQua::permFactor();
814 }
815 else {
816 throw std::logic_error("permFactor() called but salt precipitation or bioeffects are disabled");
817 }
818 }
819
820private:
828
829 Implementation& asImp_()
830 { return *static_cast<Implementation*>(this); }
831
832 FluidState fluidState_;
833 Scalar referencePorosity_;
834 Evaluation porosity_;
835 Evaluation rockCompTransMultiplier_;
836 std::array<Evaluation, numPhases> mobility_;
837
838 // Instead of writing a custom copy constructor and a custom assignment operator just to handle
839 // the dirMob_ unique ptr member variable when copying BlackOilIntensiveQuantites (see for example
840 // updateIntensitiveQuantities_() in fvbaseelementcontext.hh for a copy example) we write the below
841 // custom wrapper class CopyablePtr which wraps the unique ptr and makes it copyable.
842 //
843 // The advantage of this approach is that we avoid having to call all the base class copy constructors and
844 // assignment operators explicitly (which is needed when writing the custom copy constructor and assignment
845 // operators) which could become a maintenance burden. For example, when adding a new base class (if that should
846 // be needed sometime in the future) to BlackOilIntensiveQuantites we could forget to update the copy
847 // constructor and assignment operators.
848 //
849 // We want each copy of the BlackOilIntensiveQuantites to be unique, (TODO: why?) so we have to make a copy
850 // of the unique_ptr each time we copy construct or assign to it from another BlackOilIntensiveQuantites.
851 // (On the other hand, if a copy could share the ptr with the original, a shared_ptr could be used instead and the
852 // wrapper would not be needed)
853 DirectionalMobilityPtr dirMob_;
854};
855
856} // namespace Opm
857
858#endif
Contains the classes required to extend the black-oil model by bioeffects.
Contains the classes required to extend the black-oil model by brine.
Classes required for dynamic convective mixing.
Classes required for molecular diffusion.
Classes required for mechanical dispersion.
Contains the classes required to extend the black-oil model by energy.
Contains the classes required to extend the black-oil model by solvent component. For details,...
Contains the classes required to extend the black-oil model to include the effects of foam.
Contains the classes required to extend the black-oil model by polymer.
Declares the properties required by the black oil model.
Contains the classes required to extend the black-oil model by solvents.
Provides the volumetric quantities required for the equations needed by the bioeffects extension of t...
Definition: blackoilbioeffectsmodules.hh:518
const Evaluation & permFactor() const
Definition: blackoilbioeffectsmodules.hh:590
Contains the high level supplements required to extend the black oil model by bioeffects.
Definition: blackoilbioeffectsmodules.hh:93
static bool hasPcfactTables()
Definition: blackoilbioeffectsmodules.hh:481
static const TabulatedFunction & pcfactTable(unsigned satnumRegionIdx)
Definition: blackoilbioeffectsmodules.hh:476
Definition: blackoilbrinemodules.hh:364
Contains the high level supplements required to extend the black oil model by brine.
Definition: blackoilbrinemodules.hh:56
static const TabulatedFunction & pcfactTable(unsigned satnumRegionIdx)
Definition: blackoilbrinemodules.hh:296
static bool hasPcfactTables()
Definition: blackoilbrinemodules.hh:342
Provides the volumetric quantities required for the equations needed by the convective mixing (DRSDTC...
Definition: blackoilconvectivemixingmodule.hh:401
Provides the volumetric quantities required for the calculation of molecular diffusive fluxes.
Definition: blackoildiffusionmodule.hh:338
Provides the volumetric quantities required for the calculation of dispersive fluxes.
Definition: blackoildispersionmodule.hh:327
Provides the volumetric quantities required for the equations needed by the energys extension of the ...
Definition: blackoilenergymodules.hh:332
Provides the volumetric quantities required for the equations needed by the solvents extension of the...
Definition: blackoilextbomodules.hh:378
Provides the volumetric quantities required for the equations needed by the polymers extension of the...
Definition: blackoilfoammodules.hh:367
Contains the quantities which are are constant within a finite volume in the black-oil model.
Definition: blackoilintensivequantities.hh:85
void updateTempSalt(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx, const LinearizationType &lintype)
Definition: blackoilintensivequantities.hh:178
void updatePorosity(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
Definition: blackoilintensivequantities.hh:541
void updateCommonPart(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
Definition: blackoilintensivequantities.hh:703
const Evaluation & porosity() const
Returns the average porosity within the control volume.
Definition: blackoilintensivequantities.hh:770
void assertFiniteMembers()
Definition: blackoilintensivequantities.hh:595
const Evaluation & mobility(unsigned phaseIdx) const
Returns the effective mobility of a given phase within the control volume.
Definition: blackoilintensivequantities.hh:741
void updateMobilityAndInvB()
Definition: blackoilintensivequantities.hh:449
void update(const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx)
Definition: blackoilintensivequantities.hh:617
Evaluation relativePermeability(unsigned phaseIdx) const
Returns the relative permeability of a given phase within the control volume.
Definition: blackoilintensivequantities.hh:792
void updatePorosity(const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx)
Definition: blackoilintensivequantities.hh:530
auto pvtRegionIndex() const -> decltype(std::declval< FluidState >().pvtRegionIndex())
Returns the index of the PVT region used to calculate the thermodynamic quantities.
Definition: blackoilintensivequantities.hh:786
BlackOilFluidState< Scalar, FluidSystem, enableTemperature, enableEnergy, compositionSwitchEnabled, enableVapwat, enableBrine, enableSaltPrecipitation, enableDisgasInWater, Indices::numPhases > ScalarFluidState
Definition: blackoilintensivequantities.hh:158
BlackOilFluidState< Evaluation, FluidSystem, enableTemperature, enableEnergy, compositionSwitchEnabled, enableVapwat, enableBrine, enableSaltPrecipitation, enableDisgasInWater, Indices::numPhases > FluidState
Definition: blackoilintensivequantities.hh:148
const Evaluation & permFactor() const
Definition: blackoilintensivequantities.hh:807
void updatePorosityImpl(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
Definition: blackoilintensivequantities.hh:549
void update(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
Definition: blackoilintensivequantities.hh:679
void updateRelpermAndPressures(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx, const LinearizationType &lintype)
Definition: blackoilintensivequantities.hh:265
const FluidState & fluidState() const
Returns the phase state for the control-volume.
Definition: blackoilintensivequantities.hh:735
void updateSaturations(const PrimaryVariables &priVars, const unsigned timeIdx, const LinearizationType lintype)
Definition: blackoilintensivequantities.hh:193
BlackOilIntensiveQuantities & operator=(const BlackOilIntensiveQuantities &other)=default
GetPropType< TypeTag, Properties::Problem > Problem
Definition: blackoilintensivequantities.hh:159
const Evaluation & rockCompTransMultiplier() const
Definition: blackoilintensivequantities.hh:776
BlackOilIntensiveQuantities(const BlackOilIntensiveQuantities &other)=default
BlackOilIntensiveQuantities()
Definition: blackoilintensivequantities.hh:161
const Evaluation & mobility(unsigned phaseIdx, FaceDir::DirEnum facedir) const
Definition: blackoilintensivequantities.hh:744
Scalar referencePorosity() const
Returns the porosity of the rock at reference conditions.
Definition: blackoilintensivequantities.hh:804
void updatePhaseDensities()
Definition: blackoilintensivequantities.hh:485
void updateRsRvRsw(const Problem &problem, const PrimaryVariables &priVars, const unsigned globalSpaceIdx, const unsigned timeIdx)
Definition: blackoilintensivequantities.hh:357
Provides the volumetric quantities required for the equations needed by the polymers extension of the...
Definition: blackoilpolymermodules.hh:565
Provides the volumetric quantities required for the equations needed by the solvents extension of the...
Definition: blackoilsolventmodules.hh:539
This file contains definitions related to directional mobilities.
Definition: blackoilbioeffectsmodules.hh:43
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:233
Definition: linearizationtype.hh:34