immiscibleprimaryvariables.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef EWOMS_IMMISCIBLE_PRIMARY_VARIABLES_HH
29#define EWOMS_IMMISCIBLE_PRIMARY_VARIABLES_HH
30
31#include <dune/common/fvector.hh>
32
36
37#include <opm/material/common/Valgrind.hpp>
38#include <opm/material/constraintsolvers/ImmiscibleFlash.hpp>
39#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
40
41namespace Opm {
42
52template <class TypeTag>
54{
55 using ParentType = FvBasePrimaryVariables<TypeTag>;
56
63
65
66 // primary variable indices
67 enum { pressure0Idx = Indices::pressure0Idx };
68 enum { saturation0Idx = Indices::saturation0Idx };
69
70 enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
71 enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
72
73 using Toolbox = typename Opm::MathToolbox<Evaluation>;
74 using ComponentVector = Dune::FieldVector<Scalar, numComponents>;
75 using ImmiscibleFlash = Opm::ImmiscibleFlash<Scalar, FluidSystem>;
77
78public:
83 { Opm::Valgrind::SetUndefined(*this); }
84
91
98
99 using ParentType::operator=;
100
121 template <class FluidState>
122 void assignMassConservative(const FluidState& fluidState,
123 const MaterialLawParams& matParams,
124 bool isInEquilibrium = false)
125 {
126 #ifndef NDEBUG
127 // make sure the temperature is the same in all fluid phases
128 for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
129 assert(std::abs(fluidState.temperature(0) - fluidState.temperature(phaseIdx)) < 1e-30);
130 }
131#endif // NDEBUG
132
133 // for the equilibrium case, we don't need complicated
134 // computations.
135 if (isInEquilibrium) {
136 assignNaive(fluidState);
137 return;
138 }
139
140 // use a flash calculation to calculate a fluid state in
141 // thermodynamic equilibrium
142 typename FluidSystem::template ParameterCache<Scalar> paramCache;
143 Opm::ImmiscibleFluidState<Scalar, FluidSystem> fsFlash;
144
145 // use the externally given fluid state as initial value for
146 // the flash calculation
147 fsFlash.assign(fluidState);
148
149 // calculate the phase densities
150 paramCache.updateAll(fsFlash);
151 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
152 Scalar rho = FluidSystem::density(fsFlash, paramCache, phaseIdx);
153 fsFlash.setDensity(phaseIdx, rho);
154 }
155
156 // calculate the "global molarities"
157 ComponentVector globalMolarities(0.0);
158 for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
159 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
160 globalMolarities[compIdx] +=
161 fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
162 }
163 }
164
165 // run the flash calculation
166 ImmiscibleFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
167
168 // use the result to assign the primary variables
169 assignNaive(fsFlash);
170 }
171
188 template <class FluidState>
189 void assignNaive(const FluidState& fluidState)
190 {
191 // assign the phase temperatures. this is out-sourced to
192 // the energy module
193 EnergyModule::setPriVarTemperatures(asImp_(), fluidState);
194
195 (*this)[pressure0Idx] = fluidState.pressure(/*phaseIdx=*/0);
196 for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx)
197 (*this)[saturation0Idx + phaseIdx] = fluidState.saturation(phaseIdx);
198 }
199
200private:
201 Implementation& asImp_()
202 { return *static_cast<Implementation *>(this); }
203};
204
205} // namespace Opm
206
207#endif
Provides the auxiliary methods required for consideration of the energy equation.
Definition: energymodule.hh:54
Represents the primary variables used by the a model.
Definition: fvbaseprimaryvariables.hh:53
Represents the primary variables used by the immiscible multi-phase, model.
Definition: immiscibleprimaryvariables.hh:54
ImmisciblePrimaryVariables & operator=(const ImmisciblePrimaryVariables &value)=default
Assignment operator.
void assignNaive(const FluidState &fluidState)
Directly retrieve the primary variables from an arbitrary fluid state.
Definition: immiscibleprimaryvariables.hh:189
ImmisciblePrimaryVariables(const ImmisciblePrimaryVariables &value)=default
Copy constructor.
ImmisciblePrimaryVariables()
Default constructor.
Definition: immiscibleprimaryvariables.hh:82
void assignMassConservative(const FluidState &fluidState, const MaterialLawParams &matParams, bool isInEquilibrium=false)
< Import base class assignment operators.
Definition: immiscibleprimaryvariables.hh:122
Contains the classes required to consider energy as a conservation quantity in a multi-phase module.
Defines the properties required for the immiscible multi-phase model.
Definition: blackoilboundaryratevector.hh:39
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:233