obstacleproblem.hh File Reference
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/version.hh>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
#include <opm/models/common/multiphasebaseparameters.hh>
#include <opm/models/ncp/ncpproperties.hh>
#include <iostream>
#include <sstream>
#include <string>
Include dependency graph for obstacleproblem.hh:

Go to the source code of this file.

Classes

struct  Opm::Properties::TTag::ObstacleBaseProblem
 
struct  Opm::Properties::Grid< TypeTag, TTag::ObstacleBaseProblem >
 
struct  Opm::Properties::Problem< TypeTag, TTag::ObstacleBaseProblem >
 
struct  Opm::Properties::FluidSystem< TypeTag, TTag::ObstacleBaseProblem >
 
struct  Opm::Properties::MaterialLaw< TypeTag, TTag::ObstacleBaseProblem >
 
struct  Opm::Properties::ThermalConductionLaw< TypeTag, TTag::ObstacleBaseProblem >
 
struct  Opm::Properties::SolidEnergyLaw< TypeTag, TTag::ObstacleBaseProblem >
 
class  Opm::ObstacleProblem< TypeTag >
 Problem where liquid water is first stopped by a low-permeability lens and then seeps though it. More...
 

Namespaces

namespace  Opm
 
namespace  Opm::Properties
 
namespace  Opm::Properties::TTag
 The generic type tag for problems using the immiscible multi-phase model.
 

Detailed Description

Problem where liquid water is first stopped by a low-permeability lens and then seeps though it.

Liquid water is injected by using of a free-flow condition on the lower right of the domain. This water level then raises until hydrostatic pressure is reached. On the left of the domain, a rectangular obstacle with $10^3$ lower permeability than the rest of the domain first stops the for a while until it seeps through it.

The domain is sized 60m times 40m and consists of two media, a moderately permeable soil ( $ K_0=10e-12 m^2$) and an obstacle at $[10; 20]m \times [0; 35]m $ with a lower permeablility of $ K_1=K_0/1000$.

Initially the whole domain is filled by nitrogen, the temperature is $20^\circ C$ for the whole domain. The gas pressure is initially 1 bar, at the inlet of the liquid water on the right side it is 2 bar.

The boundary is no-flow except on the lower 10 meters of the left and the right boundary where a free flow condition is assumed.