
OPM 
DEVELOPMENT 
STORIES
Atgeirr Flø Rasmussen



About SINTEF

Vision: technology for a better society
• independent, not-for-profit organization

• largest for-contract research in Scandinavia, fourth largest in Europe 

• 2100 employees

• NOK 3.1 billion turnover, 90% ’won’ in open competition

• more than 7000 research projects for some 2300 clients

• offices in Trondheim, Oslo, Bergen, Brussels, Houston, . . . 

2



Computational Geosciences group

• One of eight research groups at the department of Mathematics & Cybernetics, 
SINTEF Digital 

• 14 researchers/postdocs/PhD students 

• Offices in Oslo, Norway 

• Performs a mixture of basic and applied research

• Well known for our open-source software: MRST and OPM 

• Internationally oriented

• Strong publication record

• Main clients: Equinor, ExxonMobil, Research Council of Norway, Wintershall, . . . 
3



Some OPM development stories

• Grid interfaces: a personal history

• Making Flow perform well

4



Grid interfaces: a personal history



Computational grids discretize
the spatial domain.

Broad topology categories:

• Structured/Cartesian

• Block-structured

• Unstructured/tetrahedral

• Fully unstructured

6

Grids in simulation codes



7

Reservoir grids are ”bad”

• Fully unstructured (arbitrary connectivity)
• Bad cell shapes
• Huge anisotropy ratios
• Very hetereogenous properties



Topology:

• Cells, Faces, Edges, Vertices
• Entities that make up the grid, dimension 3, 2, 1, 0.

• Form a cell complex: (n-1)-dim entities are intersections of n-dim entities

• Every entity is oriented (not always used)

• Adjacency relations
• Which entities (of different dimension) are adjacent

• Example: for face f0, its neighbour edges are { -e0, e1, -e2 }

Geometry:

• Positions, volumes, areas, normals, centroids…
• Anything depending on the embedding in R3

8

Important grid concepts



1. Interface used in our first upscaling codes (2006-2007)
• A single class representing a fully unstructured grid
• No templates

• Grid assumed to be unchanging after construction

• Example methods:

• Main benefits: straightforward, random access.

9

Some grid interfaces I have used (1)

void getCellsForFace(Index f, Index& c1, Index& c2) 
bool halfFaceIsFace(Index half_face_ix, Index face_ix) const
void halfFacesOfFace(Index face_ix, Index& hface1_ix, Index& hface2_ix) const
void coord(Index corner, FloatType* p) const



2. Interface used in our inhouse simulation codes (2007-2010)
• Several grid class variants: Cartesian, Cornerpoint, Tetrahedral
• Heavily templated! Very exotic to some.
• Grid assumed to be unchanging after construction
• Example code (adjacency relation: cells adjacent to a face):

• Main benefits: arbitrary topological relations, random access

10

Some grid interfaces I have used (2)

typename grid_t::range_t cells_of_face
= grid.template neighbours<FaceType, CellType>(face_index);

for (int cell_index : cells_of_face) {
// Do something with cell_index

}



3. The Dune grid interface (2009-today)
• Many grid class variants. CpGrid provides corner-point grids

• Heavily templated!

• Limited adjacency relations (but has cell->face and face->cell)

• Main benefits: suitable for parallel and adaptive use, open source and not inhouse11

Some grid interfaces I have used (3)

elemIt = gridView.template begin</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
auto isIt = gridView.ibegin(*elemIt);
const auto& isEndIt = gridView.iend(*elemIt);
for (; isIt != isEndIt; ++isIt) {
if (isIt->boundary()) {
// deal with grid boundaries

}
}

}



4. The UnstructuredGrid struct (2009-2015[ish])
• A simple C struct, similar to grid structure in MRST

• Access topological and geometric information as simple arrays

• CRS-like structure for unstructured adjacency relations

• Main benefits: easy to integrate with MRST, simple (although some conventions used might surprise you)

12

Some grid interfaces I have used (4)

for (int i = grid.cell_facepos[cell]; i < grid.cell_facepos[cell+1]; ++i) {
int f = grid.cell_faces[i];
if (cell == grid.face_cells[2*f]) {
flux = darcyflux[f];

} else {
flux = -darcyflux[f];

}
}



5. The free function grid interface in OPM (2014-today)
• All based on free functions taking a grid as one function argument

• Overloaded on grid class to support CpGrid and UnstructuredGrid

• Main benefits: allowed code to target both UnstructuredGrid and CpGrid (dune interface)

13

Some grid interfaces I have used (5)

auto c2f = cell2Faces(grid);
for(auto it = c2f.begin(), end = c2f.end(); it != end; ++it) {
const int face_index = *it;
const double area = faceArea(grid, face_index);

}



6. A grid used in an old corner-point GRDECL preprocessor (2006-2009)

7. A grid used in a colleague’s old C++ code (2005-2009)

8. A grid interface used to wrap both our in-house (2) and Dune (3) grids, still 
used in the steady-state upscaling codes (2009-today)

9. An interface designed to both deal with Dune (3) and UnstructuredGrid(4), 
similar to (5), but abandoned since (5) was better for the parallel case.

14

Even more grid interfaces I have used…



• Grid interfaces are too much fun to write

• I’ll never find one that satisfies me 100%
• I’d love to have one based on algebraic topology notation

• Do not generalize/abstract/wrap code until you are
certain it is necessary

• Use the Dune interface, unless you really need
something it does not provide
• Random access, please…

15

What have I learned?



Flow: FV order 1, upwind weighting

Requires:
• Connectivity graph

• Transmissibilities on graph edges (==faces)

• Cell depths and volumes

Ideal grid interface: only the above

High flexibility:
• Manipulate transmissibilities (faults)

• Manipulate connectivity graph (nnc, fake aquifers)

• Agnostic to actual grid type (CP, PEBI etc.)

Upscaling: mimetic method

Requires:
• Grid that is a cell-complex

• Face areas and centroids

• Cell volumes and centroids

Ideal grid interface: a cell-complex interface

Can support other discretizations:
• Higher-order methods

• Streamline methods

• Virtual Element methods (and some FE)

16

How do we write our space discretizations?



17

How can we eat our cake and have it too? (1)

Cell-complex grid
• Parallel and adaptive

Advanced discretizationsSimple graph layer

Flexible
manipulations

Finite Volume 
codes (discr. ops)

Sketch of an idea:

Some problems with this:
• Manipulations restrict adaptivity or vice versa
• Simple graph layer must also be parallel, partitioning must be done taking 

manipulations into account



18

How can we eat our cake and have it too? (2)

Cell-complex grid
• Parallel and adaptive
• Additionally allows fake neighbours

Advanced discretizations
Finite Volume 
codes (discr. ops)

Another idea:

Issues with this idea:
• Manipulations still restrict adaptivity or vice versa



Making Flow perform well



A. Assembly of nonlinear equations?
B. Solving linear systems?
C. Input/output?
D. Other things?

Answer changes over time!

For OPM Flow and our target problems, always A or B.

(I/O performance has also been improved 3x)

20

What is the main bottleneck?

Image from Joel McKelvey



Linear solver horrendously slow
• UMFPACK, direct solver
• Works for very small systems (SPE1)
• Breaks down for a few thousand cells

Root cause: linear system not well
suited for direct solver

Root cause: direct solvers do not 
scale well

21

Bottleneck 1

Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water sat Gas mix/s Well flux Well bhp



Use Schur complement to eliminate
well unknowns

Use iterative solvers from Dune

Use 2-stage CPR preconditioner
• Solve almost-elliptic system for pressure

(with AMG precond.)
• Solve full system with ILU0 precond.

Results:
• SPE9 runtime 3 minutes (was 30 min)
• Norne case ~6 times Eclipse runtime

22

Bottleneck 1 – addressed

Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water sat Gas mix/s Well flux Well bhp

Figure: Schur complement eliminates well unknowns



Assembly of nonlinear equations slow

• Functions implement residual equations

• AD class produces Jacobians

Root cause: simple operations too expensive

• Every +-*/ op triggers sparse matrix creation

• Even when matrix is diagonal or identity!

flux[phase] = upwind.select(b * mob) * (transi * dh);

Every multiplication, assignment and select() trigger sparse matrix creation.

23

Bottleneck 2



Replace SparseMatrix in AD class with smart wrapper
• Wrapper treats zero, identity and diagonal matrices with custom code
• No change at all to the simulation code!

Result:
• Norne case ~3.5 times Eclipse runtime

flux[phase] = upwind.select(b * mob) * (transi * dh);

Now only select() trigger sparse matrix creation (since result depends on unknowns in multiple cells)

24

Bottleneck 2 – addressed



Linear solver dominates runtime (again)
• Time-consuming setup of matrices for 

preconditioner and solver
• Outer linear solve of full system is slow

25

Bottleneck 3
Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water sat Gas mix/s Well flux Well bhp



Change system matrix structure
• Use block-ILU0 instead of CPR
• Before: 3x3 system of NxN sparse matrices
• Now: NxN sparse matrix of 3x3 blocks

(or 4x4 for polymer etc.)

Result:
• Norne case ~2.5 times Eclipse runtime

26

Bottleneck 3 – addressed

Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water sat Gas mix/s Well flux Well bhp



Assembly of residual and Jacobians dominate (again)

Root cause: cache-unfriendly use of AD class

Root cause: (still) too many sparse matrix ops

27

Bottleneck 4

flux[phase] = upwind.select(b * mob) * (transi * dh);

The multiplication ”b * mob” requires writing the result vector to memory before doing the next operation



Completely change assembly approach to use local AD
• Meaning: only handle fixed number of local derivatives for each variable
• Much better cache performance
• Matrix assembly is separate
• Clever trick to get derivatives for fluxes (that depend on two cells)
• Was gradually prototyped by A. Lauser for 2-3 years before switching

Results:
• Norne case ~1.7 times Eclipse runtime (~1.1 or better by now)

Consequences:
• Assembly no longer resembles MRST
• More complex code structure to understand for programmers

28

Bottleneck 4 – addressed



• Common sense and intuition? Often fails…

• Linuxbenchmarking.com

• Profiling:

29

How to find the next bottleneck?



Technology for a better society


