Unconditionally Stable Transport Solver for Polymer.

Knut-Andreas Lie Halvor Møll Nilsen
Atgeirr Flø Rasmussen Xavier Raynaud

SINTEF, Department of Applied Mathematics, Norway

OPM Symposium 2013, Bergen, 28-29 May
Plan

1. Polymer model equations.
2. Discretization and Splitting of the residual equations.
3. Unconditional Stability for the transport solver.
We use an immiscible model for polymer.
We use an immiscible model for polymer.

Polymer phase (S_{wp}) and pure water phase (S_{ww}):

\[
S_{wp} = \frac{c}{c_{\text{max}}} S_w, \quad S_{ww} = (1 - \frac{c}{c_{\text{max}}}) S_w.
\]
We use an immiscible model for polymer.

Polymer phase \((S_{wp}) \) and pure water phase \((S_{ww}) \):

\[
S_{wp} = \frac{c}{c_{\text{max}}} S_w, \quad S_{ww} = \left(1 - \frac{c}{c_{\text{max}}} \right) S_w.
\]

Conservation of mass for the polymer phase and the pure water phase:

\[
\frac{\partial}{\partial t} (\phi S_{wp}) + \nabla \cdot \left(\frac{k_{wp}(S_{wp})}{\mu_{wp}} K \nabla P \right) = 0,
\]

\[
\frac{\partial}{\partial t} (\phi S_{ww}) + \nabla \cdot \left(\frac{k_{ww}(S_{ww})}{\mu_{ww}} K \nabla P \right) = 0.
\]
We assume that $k_{ww} = k_{wp}$ and that the functions are linear with respect to c.
Effective water viscosity

- We assume that $k_{ww} = k_{wp}$ and that the functions are linear with respect to c, that is,

\[
\begin{align*}
 k_{wp}(S_{wp}) &= k_{wp}\left(\frac{c}{c_{\text{max}}}S_w\right) = \frac{c}{c_{\text{max}}}k_w(S_w), \\
 k_{ww}(S_{ww}) &= k_{ww}\left((1 - \frac{c}{c_{\text{max}}}S_w\right) = (1 - \frac{c}{c_{\text{max}}}k_w(S_w).
\end{align*}
\]
We assume that $k_{ww} = k_{wp}$ and that the functions are linear with respect to c, that is,

$$\begin{align*}
 k_{wp}(S_{wp}) &= k_{wp}\left(\frac{c}{c_{\text{max}}} S_w\right) = \frac{c}{c_{\text{max}}} k_w(S_w), \\
 k_{ww}(S_{ww}) &= k_{ww}\left((1 - \frac{c}{c_{\text{max}}} S_w\right) = (1 - \frac{c}{c_{\text{max}}}) k_w(S_w).
\end{align*}$$

We sum up the two equations of mass conservation ...

$$\begin{align*}
 \frac{\partial}{\partial t}(\phi S_{wp}) + \nabla \cdot \left(\frac{k_{wp}(S_{wp})}{\mu_{wp}} K \nabla P\right) &= 0 \\
 \frac{\partial}{\partial t}(\phi S_{ww}) + \nabla \cdot \left(\frac{k_{ww}(S_{ww})}{\mu_{ww}} K \nabla P\right) &= 0
\end{align*}$$
Effective water viscosity

- We assume that $k_{ww} = k_{wp}$ and that the functions are linear with respect to c, that is,

\[
\begin{align*}
 & k_{wp}(S_{wp}) = k_{wp}\left(\frac{c}{c_{\text{max}}} S_w\right) = \frac{c}{c_{\text{max}}} k_w(S_w), \\
 & k_{ww}(S_{ww}) = k_{ww}\left((1 - \frac{c}{c_{\text{max}}}) S_w\right) = (1 - \frac{c}{c_{\text{max}}}) k_w(S_w).
\end{align*}
\]

- ... and obtain

\[
\frac{\partial}{\partial t} (\phi S_w) + \nabla \cdot \left(\left(\frac{c}{c_{\text{max}}} \frac{1}{\mu_{wp}} + (1 - \frac{c}{c_{\text{max}}}) \frac{1}{\mu_{ww}} \right) k_w(S_w) K \nabla P \right) = 0
\]
Effective water viscosity

- We assume that \(k_{ww} = k_{wp} \) and that the functions are linear with respect to \(c \), that is,

\[
\begin{align*}
 k_{wp}(S_{wp}) &= k_{wp}\left(\frac{c}{c_{\text{max}}} S_w\right) = \frac{c}{c_{\text{max}}} k_w(S_w), \\
 k_{ww}(S_{ww}) &= k_{ww}\left((1 - \frac{c}{c_{\text{max}}} S_w)\right) = (1 - \frac{c}{c_{\text{max}}}) k_w(S_w).
\end{align*}
\]

- ... and obtain

\[
\frac{\partial}{\partial t} (\phi S_w) + \nabla \cdot \left(\left(\frac{1}{\mu_{w,\text{eff}}} \right) k_w(S_w) K \nabla P \right) = 0,
\]

The equation of mass conservation for water.
The mixing parameter ω

- If $\mu_{ww}(c) = \mu_{wp}(c)$: The two phases are identical. No interaction, polymer is simply transported.
The mixing parameter ω

- If $\mu_{ww}(c) = \mu_{wp}(c)$: The two phases are identical. No interaction, polymer is simply transported.
- Intermediate cases are defined by introducing a parameter ω

\[
\begin{align*}
\mu_{ww}(c) &= \mu_m(c)^\omega \mu_w^{1-\omega} \\
\mu_{wp}(c) &= \mu_m(c)^\omega \mu_p^{1-\omega}
\end{align*}
\]

where μ_m denotes the concentration of the fully mixed solution.
We look at the one dimensional problem: 2x2 system of hyperbolic conservation laws, with given total flux.
A polymer slug

- We look at the one dimensional problem: 2x2 system of hyperbolic conservation laws, with given total flux.
- Let \(\kappa = \left(\frac{\mu_p}{\mu_w} \right)^{1-\omega} \).
We look at the one dimensional problem: 2×2 system of hyperbolic conservation laws, with given total flux.

Let $\kappa = \left(\frac{\mu_p}{\mu_w} \right)^{1-\omega}$.

Initial data
We look at the one dimensional problem: 2x2 system of hyperbolic conservation laws, with given total flux.

Let \(\kappa = \left(\frac{\mu_p}{\mu_w} \right)^{1-\omega} \).
A polymer slug

- We look at the one dimensional problem: 2x2 system of hyperbolic conservation laws, with given total flux.

- Let $\kappa = \left(\frac{\mu_p}{\mu_w} \right)^{1-\omega}$.

For all ω, the water front propagates at same speed.
A polymer slug

- We look at the one dimensional problem: 2x2 system of hyperbolic conservation laws, with given total flux.
- Let \(\kappa = \left(\frac{\mu_p}{\mu_w} \right)^{1-\omega} \).

Case \(\omega = 1 \), fully mixed.
A polymer slug

- We look at the one dimensional problem: 2x2 system of hyperbolic conservation laws, with given total flux.

- Let $\kappa = \left(\frac{\mu_p}{\mu_w} \right)^{1-\omega}$.

Case $\omega < 1$, rarefaction wave at the tail.
Other features

- Adsorption.

Finally, mass conservation equations:

\[
\frac{\partial}{\partial t} \left(b_w \phi S_w \right) + \nabla \cdot \left(b_w \vec{v}_w \right) = 0,
\]

\[
\frac{\partial}{\partial t} \left(b_o \phi S_o \right) + \nabla \cdot \left(b_o \vec{v}_o \right) = 0,
\]

\[
\frac{\partial}{\partial t} \left(b_w \phi S_w c \right) + \frac{\partial}{\partial t} \left((1 - \phi) \hat{c}_a \right) + \nabla \cdot \left(b_w c \vec{v}_wp \right) = 0,
\]

with

\[
\vec{v}_w = -k_{rw} \mu_{w,\text{eff}}(c) \mathbf{R}_k(c) \mathbf{K}(\nabla p_w - \rho_w g \nabla z),
\]

\[
\vec{v}_wp = -k_{rwp} \mu_{p,\text{eff}}(c) \mathbf{R}_k(c) \mathbf{K}(\nabla p_w - \rho_w g \nabla z) = m(c) \vec{v}_w.
\]
Other features

- Adsorption.
- Reduced permeability.
Other features

- Adsorption.
- Reduced permeability.
- Dead pore space. There is a problem with the model in eclipse. We use an alternative one.

Finally, mass conservation equations:

\[
\begin{align*}
\frac{\partial}{\partial t} (b_w \varphi S_w) + \nabla \cdot (b_w \vec{v}_w) &= 0, \\
\frac{\partial}{\partial t} (b_o \varphi S_o) + \nabla \cdot (b_o \vec{v}_o) &= 0, \\
\frac{\partial}{\partial t} (b_w \varphi S_w c) + \frac{\partial}{\partial t} ((1 - \varphi_{\text{ref}}) \hat{c}_a) + \nabla \cdot (b_w \vec{v}_w p) &= 0,
\end{align*}
\]

with

\[
\vec{v}_w = -k_{rw} \mu_w, \\
\vec{v}_wp = -k_{rwp} \mu_p, \\
\hat{c}_a R_k(c_a) K(\nabla p_w - \rho_w g \nabla z) = m(c) \vec{v}_w.
\]
Other features

- Adsorption.
- Reduced permeability.
- Dead pore space. There is a problem with the model in eclipse. We use an alternative one.
- Finally, mass conservation equations:

\[
\frac{\partial}{\partial t} (b_w \phi S_w) + \nabla \cdot (b_w \vec{v}_w) = 0,
\]
\[
\frac{\partial}{\partial t} (b_o \phi S_o) + \nabla \cdot (b_o \vec{v}_o) = 0,
\]
\[
\frac{\partial}{\partial t} (b_w \phi S_w c) + \frac{\partial}{\partial t} ((1 - \phi_{\text{ref}}) \hat{c}^a) + \nabla \cdot (b_w c \vec{v}_{wp}) = 0,
\]

with

\[
\vec{v}_w = - \frac{k_{rw}}{\mu_{w,\text{eff}}(c) R_k(c^a)} K (\nabla p_w - \rho_w g \nabla z),
\]
\[
\vec{v}_{wp} = - \frac{k_{rwp}}{\mu_{p,\text{eff}}(c) R_k(c^a)} K (\nabla p_w - \rho_w g \nabla z) = m(c) \vec{v}_w.
\]
Discretization and Splitting

- Space discretization: Two point flux and upwind approximation.
Discretization and Splitting

- Space discretization: Two point flux and upwind approximation.
- Time discretization: Implicit.
Water and oil residual for the cell i:

$$R_{\alpha,i}(S_{n+1}^i, c_{n+1}^i) = b_{n+1}^i \phi_{n+1}^i S_{n+1}^i - b_n^i \phi_n^i S_n^i$$

$$+ \frac{\Delta t}{V_i} \sum_{\{j|v_{i,j}^{n+1}<0\}} f_{\alpha}(S_{n+1}^j, c_{n+1}^j) b_{ij}^{n+1} v_{ij}^{n+1}$$

$$+ \frac{\Delta t}{V_i} f_{\alpha}(S_{n+1}^i, c_{n+1}^i) \sum_{\{j|v_{i,j}^{n+1}>0\}} b_{ij}^{n+1} v_{ij}^{n+1},$$

for $\alpha = \{w, o\}$
Polymer residual (only advection part)

Polymer residual for the cell i:

$$R_{c,i}(S^{n+1}, c^{n+1}) = b_{i}^{n+1} \phi_{i}^{n+1} S_{i}^{n+1} c_{i}^{n+1} + \hat{c}^{a}(c_{i}^{n+1})(1 - \phi_{ref,i})$$

$$- \left(b_{i}^{n} \phi_{i}^{n} S_{i}^{n} c_{i}^{n} + \hat{c}^{a}(c_{i}^{n})(1 - \phi_{ref,i}) \right)$$

$$+ \frac{\Delta t}{V_{i}} \sum_{\{j|v_{i,j}^{n+1} < 0\}} m(c_{j}^{n+1})c_{j}^{n+1} f_{w}(S_{j}^{n+1}, c_{j}^{n+1}) b_{ij}^{n+1} v_{ij}^{n+1}$$

$$+ m(c_{i}^{n+1})c_{i}^{n+1} f_{w}(S_{i}^{n+1}, c_{i}^{n+1}) \frac{\Delta t}{V_{i}} \sum_{\{j|v_{i,j}^{n+1} > 0\}} b_{ij}^{n+1} v_{ij}^{n+1}$$

$$= 0.$$
We can solve the fully coupled system of equations. Everything is let to the Newton solver. The physics is lost (even if it may come back via preconditioners).
We can solve the fully coupled system of equations. Everything is let to the Newton solver. The physics is lost (even if it may come back via preconditioners).

Alternatively, we split the equations. Each splitting part corresponds to a well-identified physical phenomenon. We regain control on the computation process.
Assume no polymer, incompressible fluids. Then, mass conservation for each phase is given by

\[\frac{\partial (\phi S_\alpha)}{\partial t} + \nabla \cdot (\lambda_\alpha (S_\alpha) \mathbf{K} \nabla P) = 0 \]
The pressure equation

- Assume no polymer, incompressible fluids. Then, mass conservation for each phase is given by

\[\frac{\partial (\phi S_\alpha)}{\partial t} + \nabla \cdot (\lambda_\alpha(S_\alpha) K \nabla P) = 0 \]

- After summation, it yields

\[\phi \frac{\partial}{\partial t} \left(\sum_\alpha S_\alpha - 1 \right) = - \frac{\partial \phi}{\partial t} \left(\sum_\alpha S_\alpha - 1 \right) \]

\[- \left(\frac{\partial \phi}{\partial t} - \nabla \cdot \left(\sum_\alpha (\lambda_\alpha(S_\alpha))K \nabla P \right) \right) \]
The pressure equation

- Assume no polymer, incompressible fluids. Then, mass conservation for each phase is given by

\[
\frac{\partial (\phi S_\alpha)}{\partial t} + \nabla \cdot (\lambda_\alpha (S_\alpha) K \nabla P) = 0
\]

- After summation, it yields

\[
\phi \frac{\partial}{\partial t} (\sum_\alpha S_\alpha - 1) = - \frac{\partial \phi}{\partial t} (\sum_\alpha S_\alpha - 1) - \left(\frac{\partial \phi}{\partial t} - \nabla \cdot (\sum_\alpha (\lambda_\alpha (S_\alpha)) K \nabla P) \right)
\]
The pressure equation

- Assume no polymer, incompressible fluids. Then, mass conservation for each phase is given by

\[\frac{\partial (\phi S_\alpha)}{\partial t} + \nabla \cdot (\lambda_\alpha(S_\alpha)K \nabla P) = 0 \]

- After summation, it yields

\[\phi \frac{\partial}{\partial t} (\sum_\alpha S_\alpha - 1) = -\frac{\partial \phi}{\partial t} (\sum_\alpha S_\alpha - 1) \]
\[- \left(\frac{\partial \phi}{\partial t} - \nabla \cdot (\sum_\alpha (\lambda_\alpha(S_\alpha))K \nabla P) \right) \]

- The pressure enforces volume preservation.
Single cell problem

- Discrete pressure equation

\[
\frac{1}{b_{w,i}} R_{w,i}(S^n, c^n) + \frac{1}{b_{o,i}} R_{o,i}(S^n, c^n) = 0.
\]
Single cell problem

- Discrete pressure equation

\[
\frac{1}{b_{w,i}} R_{w,i}(S^n, c^n) + \frac{1}{b_{o,i}} R_{o,i}(S^n, c^n) = 0.
\]

- Transport equation (advection part). The single cell problem for the cell \(i \) is given by

\[
R_{w,i}(S_i^{n+1}, c_i^{n+1}) = b_i^{n+1} \phi_i^{n+1} S_i^{n+1} - b_i^n \phi_i^n S_i^n
\]

\[
+ \frac{\Delta t}{V_i} \sum_{\{j|v_{i,j}^{n+1}<0\}} f_w(S_j^{n+1}, c_j^{n+1}) b_{ij}^{n+1} v_{ij}^{n+1}
\]

\[
+ \frac{\Delta t}{V_i} f_w(S_i^{n+1}, c_i^{n+1}) \sum_{\{j|v_{i,j}^{n+1}>0\}} b_{ij}^{n+1} v_{ij}^{n+1}
\]

\[= 0\]
The single cell problem is the fundamental building block in an iterative transport solver.
The single cell problem is the fundamental building block in an iterative transport solver.

Definition: We say that the transport solver is uniformly stable if there exists a unique solution to the single cell problem for any time step Δt.

Uniform stability
We demonstrate the proof of unconditional stability in the simplest case. We want to solve

\[R_w(S, c) = 0, \quad R_c(S, c) = 0. \]
Simple case for advection

- We demonstrate the proof of unconditional stability in the simplest case. We want to solve

\[R_w(S, c) = 0, \quad R_c(S, c) = 0. \]

- We show that given \(c \), there exists unique \(S(c) \) such that

\[R_w(S(c), c) = 0 \]

- We check that

\[R_w(0, c) \leq 0, \quad R_w(1, c) \geq 0 \] and \(\partial R_w / \partial S > 0 \).

- We look at function \(c \mapsto R_c(S(c), c) \) and check that:

\[
\begin{cases}
R_c(S(0), 0) \leq 0, \\
R_c(S(c_{\text{max}}), c_{\text{max}}) \geq 0, \\
\frac{d}{dc}(R_c(S(c), c)) > 0.
\end{cases}
\]
We demonstrate the proof of unconditional stability in the simplest case. We want to solve

\[R_w(S, c) = 0, \quad R_c(S, c) = 0. \]

We show that given \(c \), there exists unique \(S(c) \) such that \(R_w(S(c), c) = 0 \)

We check that \(R_w(0, c) \leq 0, \quad R_w(1, c) \geq 0 \) and \(\frac{\partial R_w}{\partial S} > 0 \).
We demonstrate the proof of unconditional stability in the simplest case. We want to solve
\[R_w(S, c) = 0, \quad R_c(S, c) = 0. \]

We show that given \(c \), there exists unique \(S(c) \) such that \(R_w(S(c), c) = 0 \).

We check that \(R_w(0, c) \leq 0, R_w(1, c) \geq 0 \) and \(\frac{\partial R_w}{\partial S} > 0 \).

\[R_w(0, c) = -\phi_i^n S_i^n + \frac{\Delta t}{V_i} \sum_{\{j|v_{i,j}^{n+1} < 0\}} f_w(S_{j}^{n+1}, c_{j}^{n+1})v_{i,j}^{n+1} \leq 0. \]

\[R_w(1, c) = R_w,i(1, c) - (R_w,i(S^n, c^n) + R_o,i(S^n, c^n)) \]
\[= \phi_i^n S_o,i^n - \frac{\Delta t}{V_i} \sum_{\{j|v_{i,j}^{n+1} < 0\}} (1 - f_w(S_{j}^{n+1}, c_{j}^{n+1}))v_{i,j}^{n+1} \geq 0 \]
Simple case for advection

- We demonstrate the proof of unconditional stability in the simplest case. We want to solve
 \[R_w(S, c) = 0, \quad R_c(S, c) = 0. \]

- We show that given \(c \), there exists unique \(S(c) \) such that \(R_w(S(c), c) = 0 \).

- We check that \(R_w(0, c) \leq 0 \), \(R_w(1, c) \geq 0 \) and \(\frac{\partial R_w}{\partial S} > 0 \).

- We look at function \(c \mapsto R_c(S(c), c) \) and check that:

 \[
 \begin{cases}
 R_c(S(0), 0) \leq 0, \\
 R_c(S(c_{\text{max}}), c_{\text{max}}) \geq 0, \\
 \frac{d}{dc}(R_c(S(c), c)) > 0.
 \end{cases}
 \]
Simple case for advection

- We demonstrate the proof of unconditional stability in the simplest case. We want to solve

\[R_w(S, c) = 0, \quad R_c(S, c) = 0. \]

- We show that given \(c \), there exists unique \(S(c) \) such that \(R_w(S(c), c) = 0 \)

- We check that \(R_w(0, c) \leq 0, R_w(1, c) \geq 0 \) and \(\frac{\partial R_w}{\partial S} > 0 \).

- We look at function \(c \mapsto R_c(S(c), c) \) and check that:

\[
\begin{cases}
R_c(S(0), 0) \leq 0, \\
R_c(S(c_{\text{max}}), c_{\text{max}}) \geq 0, \\
\frac{d}{dc} (R_c(S(c), c)) > 0.
\end{cases}
\]

- We use essentially that

\[
\frac{\partial f_w}{\partial S} \geq 0 \quad \text{and} \quad \frac{\partial f_w}{\partial c} \leq 0
\]
We can prove that the single cell transport solver is uniformly stable for

- Compressible fluids, if $c_w \leq c_o$. In this case, we cannot expect $R_o = 0$ (mass conservation for oil).
We can prove that the single cell transport solver is uniformly stable for

- Compressible fluids, if $c_w \leq c_o$. In this case, we cannot expect $R_o = 0$ (mass conservation for oil).
- Dead for space (if correctly introduced).
We can prove that the single cell transport solver is uniformly stable for

- Compressible fluids, if $c_w \leq c_o$. In this case, we cannot expect $R_o = 0$ (mass conservation for oil).
- Dead for space (if correctly introduced).
- Adsorption.
We can prove that the single cell transport solver is uniformly stable for

- Compressible fluids, if $c_w \leq c_o$. In this case, we cannot expect $R_o = 0$ (mass conservation for oil).
- Dead for space (if correctly introduced).
- Adsorption.
- Reduced permeability.
The segregation equation is given by

\[
\frac{\partial}{\partial t} (\phi S_w) + \nabla \cdot \left(\frac{\lambda_w(S_w)\lambda_o(S_o)}{\lambda_w(S_w) + \lambda_o(S_o)} (\rho_o - \rho_w) gK \nabla z \right) = 0
\]
The segregation equation is given by
\[
\frac{\partial}{\partial t} (\phi S_w) + \nabla \cdot \left(\frac{\lambda_w(S_w) \lambda_o(S_o)}{\lambda_w(S_w) + \lambda_o(S_o)} (\rho_o - \rho_w) g K \nabla z \right) = 0
\]

The residual for water mass conservation is given by
\[
R_w(S) = \phi_i (S_i - S_i^*) + \frac{g \Delta t}{V_i} \left(F(S_i, S_i+1) T_{i,i+1} (z_{i+1} - z_i) - F(S_{i-1}, S_i) T_{i-1,i} (z_i - z_{i-1}) \right) = 0
\]

where \(F(S_u, S_l) \) approximates the flux for segregation,
\[
F(S, S) = \frac{\lambda_w(S) \lambda_o(1 - S)}{\lambda_w(S) + \lambda_o(1 - S)}
\]
The segregation equation is given by
\[
\frac{\partial}{\partial t} (\phi S_w) + \nabla \cdot \left(\frac{\lambda_w(S_w) \lambda_o(S_o)}{\lambda_w(S_w) + \lambda_o(S_o)} (\rho_o - \rho_w) g K \nabla z \right) = 0
\]

The residual for water mass conservation is given by
\[
R_w(S) = \phi_i(S_i - S_i^*) + \frac{g \Delta t}{V_i} \left(F(S_i, S_{i+1}) T_{i,i+1} (z_{i+1} - z_i) - F(S_{i-1}, S_i) T_{i-1,i} (z_i - z_{i-1}) \right) = 0
\]

where \(F(S_u, S_l) \) approximates the flux for segregation,
\[
F(S, S) = \frac{\lambda_w(S) \lambda_o(1 - S)}{\lambda_w(S) + \lambda_o(1 - S)}
\]

Upwind phase mobility:
\[
F(S_u, S_l) = \frac{\lambda_w(S_u) \lambda_o(1 - S_l)}{\lambda_w(S_u) + \lambda_o(1 - S_l)}.
\]
Let \(\mathbf{u} = (S, c) \). The residuals take the form

\[
\phi_i(S_i - S_i^*) + \frac{g \Delta t}{V_i} \left(F(\mathbf{u}_i, \mathbf{u}_{i+1}) T_{i,i+1}(z_{i+1} - z_i) - F(\mathbf{u}_{i-1}, \mathbf{u}_i) T_{i-1,i}(z_i - z_{i-1}) \right) = 0
\]

and

\[
\phi_i(S_ic_i - S_i^*c_i^*) + \frac{g \Delta t}{V_i} \left(G(\mathbf{u}_i, \mathbf{u}_{i+1}) T_{i,i+1}(z_{i+1} - z_i) - G(\mathbf{u}_{i-1}, \mathbf{u}_i) T_{i-1,i}(z_i - z_{i-1}) \right) = 0
\]
Let \(\mathbf{u} = (S, c) \). The residuals take the form

\[
\phi_i(S_i - S_i^*) + \frac{g \Delta t}{V_i} \left(F(\mathbf{u}_i, \mathbf{u}_{i+1}) T_{i,i+1}(z_{i+1} - z_i) - F(\mathbf{u}_{i-1}, \mathbf{u}_i) T_{i-1,i}(z_i - z_{i-1}) \right) = 0
\]

and

\[
\phi_i(S_i c_i - S_i^* c_i^*) + \frac{g \Delta t}{V_i} \left(G(\mathbf{u}_i, \mathbf{u}_{i+1}) T_{i,i+1}(z_{i+1} - z_i) - G(\mathbf{u}_{i-1}, \mathbf{u}_i) T_{i-1,i}(z_i - z_{i-1}) \right) = 0
\]

We can prove that the fluxes given by

\[
F(\mathbf{u}_u, \mathbf{u}_l) = \frac{\lambda_w(S_u, c_u) \lambda_o(1 - S_l)}{\lambda_w(S_u, c_u) + \lambda_o(1 - S_l)},
\]

\[
G(\mathbf{u}_u, \mathbf{u}_l) = m(c_u) c_u \frac{\lambda_w(S_u, c_l) \lambda_o(1 - S_l)}{\lambda_w(S_u, c_l) + \lambda_o(1 - S_l)}.
\]

yield stability.