Status of simulation software in OPM

Tor Harald Sandve

OPM meeting, Trondheim, 11 March
Overview of simulators

› **FLOW (Fully implicit black-oil simulator)**
 • Polymer flooding
 • Thermal simulations

› Ewoms

› Single-phase and steady state upscaling

› PORSOL (IMPES black-oil simulator)

› Multiple solvers for 2-phase flow

› Vertical equilibrium simulator (2-phase flow)
FLOW (Fully implicit black-oil simulator)

› Based on automatic differensialization
› IO
 • Read Eclipse decks
 • Output Eclipse summary, restart and egrid files
› Grid
 • Corner point geometry with faults
 • Modification of transmissibilities
 – Region multipliers
 – Fault multipliers
 • Net-to-gross
 • MINPV / PINCH
› Initialization
 • Equilibrium
 • Initial water saturation
› Properties
 • Dissolved gas
 • Vaporized oil
 • Capillary pressure
 • End-point scaling
 • Hysteresis (using end-point scaling)
 • Oil vaporization controls (VAPPARS)
› Wells
 • Control: BHP, surface rates and reservoir rates, (Group)
 • Shutting/Stopping/Opening wells and individual completions
 • History matching wells
› CPR preconditioner
› Time-step controls
Comparison SPE 9

› 9000 cells
› high degree of heterogeneity in the permeability field.
› 25 producers and one injector. Well controls changed several times during simulation.
Oil production

[Graph showing oil production over time with two lines labeled 'OPM' and 'Industry standard simulator']
Water production

![Water production graph](image_url)
Comparison Norne

› 44431 active cells
› 10 years of historical injection and production rates
› 8 injectors and 28 producers
› End-point scaling
› Hysteresis
Norne results: Production wells

BHP Oil Gas Water

B-1H

B-2H

B-3H
Norne results: Producing wells

BHP

Oil

Gas

Water

B-4H

D-1H

D-2H

12 March 2015
Norne results: Producing wells

D-4H

E-1H

E-2H

BHP

Oil

Gas

Water
Norne results: Injecting wells

C-1H

BHP

Gas

Water

C-2H

OPM meeting, Trondheim, 11 March
Norne results: Injecting wells

BHP

Gas

Water

C-3H

F-1H

OPM meeting, Trondheim, 11 March
Performance SPE1 and SPE9

<table>
<thead>
<tr>
<th></th>
<th>Eclipse OPM (BiCG + iLU + tuning)</th>
<th>SPE 1</th>
<th>SPE 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time (sec.)</td>
<td></td>
<td>0.4</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>OPM (Gmres + iLU)</td>
<td>1.65 (4.1)</td>
<td>39.2 (11.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.19 (7.9)</td>
<td>67.4 (20.4)</td>
</tr>
<tr>
<td>Total Newtons</td>
<td></td>
<td>246</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>OPM (BiCG + iLU + tuning)</td>
<td>190</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>OPM (Gmres + iLU)</td>
<td>331</td>
<td>206</td>
</tr>
<tr>
<td>Total linear solves</td>
<td></td>
<td>639</td>
<td>892</td>
</tr>
<tr>
<td></td>
<td>OPM (BiCG + iLU + tuning)</td>
<td>450</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>OPM (Gmres + iLU)</td>
<td>1476</td>
<td>1510</td>
</tr>
</tbody>
</table>
Performance Norne

<table>
<thead>
<tr>
<th>Total time (sec.)</th>
<th>Eclipse</th>
<th>OPM (BiCG + fastAMG + tuning)</th>
<th>OPM (BiCG + fastAMG + tuning)</th>
<th>OPM (Gmres + iLU)</th>
<th>Norne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5452 (6.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7848 (9.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>15000 (>17.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Newtons</th>
<th>Eclipse</th>
<th>OPM (BiCG + AMG + tuning)</th>
<th>OPM (BiCG + AMG + tuning)</th>
<th>OPM (Gmres + iLU)</th>
<th>Norne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2635</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3882</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>4000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total linear solves</th>
<th>Eclipse</th>
<th>OPM (BiCG + AMG + tuning)</th>
<th>OPM (BiCG + AMG + tuning)</th>
<th>OPM (Gmres + iLU)</th>
<th>Norne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7922</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12593</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>20000</td>
</tr>
</tbody>
</table>

OPM meeting, Trondheim, 11 March
FLOW-Polymer

› Compressible oil-water-polymer solver
› Black-oil-polymer solver
› (Also a sequential version)
FLOW-Thermal

- Temperature dependent properties
 \(x(p,T) = x_p(p) * x_T(T) \)
- Iso-thermal
- TODO: Solve energy equation
eWoms

eWoms not a simulator, but a framework to easily create one:

› Fully implicit solvers:
 • Element centered finite volume method
 • Vertex centered finite volume method
 • Implicit Euler for time discretization

› Currently featuring 7 porous media flow models, including
 • Richards
 • Immiscible fluids
 • Black-oil
 • Three fully compositional models

› Support for MPI and OpenMP (thread) parallelism

› Uses linear solvers of Dune-ISTL

› Support for the ECL decks via 'ebos' simulator
 • Same results as 'flow' and Eclipse 100 for SPE1 and SPE9
 • Some more advanced features not yet implementet

› Support for arbitrary number of fluid phases in all "generic" model

› Optional energy conservation for most model

› All models switchable between Darcy and Forchheimer velocities
Upscaling

› **Permeability (single-phase)**
 - Flow-based: solve directional pressure problems
 - Much more accurate than harmonic averaging etc.
 - Mimetic discretization of pressure
 - Linear solver: dune-istl AMG (or FastAMG)
 - Fixed, Linear or Periodic boundaries
 - Produces symmetric tensor (with periodic boundaries)

› **Relative permeability (two-phase)**
 - Compute a steady-state for given configuration
 - Depends on flow direction, pressure drop, initial saturation
 - Compute upscaled perm based on phase mobilities
 - Produces full tensor relperm as output
 - Computing steady states
 - Two-phase incompressible, immiscible flow
 - Include capillary pressure, gravity
 - Fixed, Linear or Periodic boundaries
 - Pressure: mimetic discretization, AMG
 - Saturation: TPFA discretization, explicit or implicit Euler
Next steps (for the FLOW simulator)

› Energy equation
› Extended black-oil model (3 phase, 4 component) for CO2-EOR simulations
› Continue adding features to support new fields.
› Parallelization
› Refactoring
› Performance
› Release