# Status of simulation software in OPM



Tor Harald Sandve



## **Overview of simulators**

#### > FLOW (Fully implicit black-oil simulator)

- Polymer flooding
- Thermal simulations
- > Ewoms
- > Single-phase and steady state upscaling
- > PORSOL (IMPES black-oil simulator)
- > Multiple solvers for 2-phase flow
- > Vertical equilibrium simulator (2-phase flow)



## FLOW (Fully implicit black-oil simulator)



- > Based on automatic differensialization
- > IO
  - Read Eclipse decks
  - Output Eclipse summary, restart and egrid files
- > Grid
  - Corner point geometry with faults
  - Modification of transmissibilities
    - Region multipliers
    - Fault multipliers
  - Net-to-gross
  - MINPV / PINCH
- > Initialization
  - Equilibrium
  - Initial water saturation

- > Properties
  - Dissolved gas
  - Vaporized oil
  - Capillary pressure
  - End-point scaling
  - Hysteresis (using end-point scaling)
  - Oil vaporization controls (VAPPARS)
- > Wells
  - Control: BHP, surface rates and reservoir rates, (Group)
  - Shutting/Stopping/Opening wells and individual completions
  - History matching wells
- > CPR preconditioner
- > Time-step controls

OPM meeting, Trondheim, 11 March

## **Comparison SPE 9**

- > 9000 cells
- > high degree of heterogeneity in the permeability field.
- > 25 producers and one injector. Well controls changed several times during simulation.





BHP





## Oil production





## Gas production





→ OPM
Industry standard simulator

### Water production





## **Comparison Norne**

- > 44431 active cells
- > 10 years of historical injection and production rates
- > 8 injectors and 28 producers
- > End-point scaling
- > Hysteresis







## Norne results: Production wells













IRIS

Water







B-2H:WWPR



OPM meeting, Trondheim, 11 March

1000 1500 Dayr

## Norne results: Producing wells





## Norne results: Producing wells





#### Norne results: Injecting wells













#### Norne results: Injecting wells













## Performance SPE1 and SPE9



|                        |                                                           | SPE 1                                          | SPE 9                                            |
|------------------------|-----------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Total time<br>(sec.)   | Eclipse<br>OPM (BiCG + iLU + tuning)<br>OPM (Gmres + iLU) | 0.4<br>1.65 ( <mark>4.1</mark> )<br>3.19 (7.9) | 3.3<br>39.2 ( <mark>11.9</mark> )<br>67.4 (20.4) |
| Total<br>Newtons       | Eclipse<br>OPM (BiCG + iLU + tuning)<br>OPM (Gmres + iLU) | 246<br>190<br>331                              | 154<br>167<br>206                                |
| Total linear<br>solves | Eclipse<br>OPM (BiCG + iLU + tuning)<br>OPM (Gmres + iLU) | 639<br>450<br>1476                             | 892<br>406<br>1510                               |

## Performance Norne



|                        |                                                                                                | Norne                                                                           |
|------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Total time (sec.)      | Eclipse<br>OPM (BiCG + fastAMG + tuning)<br>OPM (BiCG + fastAMG + tuning)<br>OPM (Gmres + iLU) | 852<br>5452 ( <mark>6.4</mark> )<br>7848 ( <mark>9.2</mark> )<br>>15000 (>17.6) |
| Total Newtons          | Eclipse<br>OPM (BiCG + AMG + tuning)<br>OPM (BiCG + AMG + tuning)<br>OPM (Gmres + iLU)         | 2241<br>2635<br>3882<br>>4000                                                   |
| Total linear<br>solves | Eclipse<br>OPM (BiCG + AMG + tuning)<br>OPM (BiCG + AMG + tuning)<br>OPM (Gmres + iLU)         | 20852<br>7922<br>12593<br>>20000                                                |

## **FLOW-Polymer**

- > Compressible oil-water-polymer solver
- > Black-oil-polymer solver
- > (Also a sequential version)



### **FLOW-Thermal**

- > Temperature dependent properties
   (x(p,T) = x\_p(p) \*x\_T(T))
- > Iso-thermal
- > TODO: Solve energy equation





#### eWoms

eWoms not a simulator, but a framework to easily create one:

- > Fully implicit solvers:
  - Element centered finite volume method
  - Vertex centered finite volume method
  - Implicit Euler for time discretization
- Currently featuring 7 porous media flow models, including
  - Richards
  - Immiscible fluids
  - Black-oil
  - Three fully compositional models
- Support for MPI and OpenMP (thread) parallelism
- > Uses linear solvers of Dune-ISTL

- Support for the ECL decks via 'ebos' simulator
  - Same results as 'flow' and Eclipse 100 for SPE1 and SPE9
  - Some more advanced features not yet implementet
- Support for arbitrary number of fluid phases in all "generic" model
- Optional energy conservation for most model
- All models switchable between Darcy and Forchheimer velocities



#### SPE 9 results. EBOS





Prod 10

#### Prod 20



## Upscaling

- > Permeability (single-phase)
  - Flow-based: solve directional pressure problems
  - Much more accurate than harmonic averaging etc.
  - Mimetic discretization of pressure
  - Linear solver: dune-istl AMG (or FastAMG)
  - Fixed, Linear or Periodic boundaries
  - Produces symmetric tensor (with periodic boundaries)





- Relative permeability (two-phase)
  - Compute a steady-state for given configuration
  - Depends on flow direction, pressure drop, initial saturation
  - Compute upscaled perm based on phase mobilities
  - Produces full tensor relperm as output
  - Computing steady states
    - Two-phase incompressible, immiscible flow
    - Include capillary pressure, gravity
    - Fixed, Linear or Periodic boundaries
    - Pressure: mimetic discretization, AMG
    - Saturation: TPFA discretization, explicit or implicit Euler

## Next steps (for the FLOW simulator)



- > Energy equation
- > Extended black-oil model (3 phase, 4 component) for CO2-EOR simulations
- > Continue adding features to support new fields.
- > Parallelization
- > Refactoring
- > Performance
- > Release