The OPM Dense Automatic Differentiation Framework

Andreas Lauser

June 1, 2016
Overview

1. Automatic Differentiation
2. The OPM Dense-AD Implementation
3. Performance
Overview

1. Automatic Differentiation
2. The OPM Dense-AD Implementation
3. Performance
(Forward) Automatic Differentiation

- For any differentiable function $f(x_1, \ldots, x_n)$ always also evaluate the derivatives with regard to a given set of variables.
- i.e., for any given evaluation point $\mathbf{x} = (x_1, \ldots, x_n)$, compute $f(\mathbf{x}), \partial_{x_1} f(\mathbf{x}), \ldots, \partial_{x_n} f(\mathbf{x})$.
- Provide operators and “primitive” functions to define composite functions (like residuals of PDEs).
Scalar field: Function $f : \Omega \rightarrow \mathcal{R}$ were $\Omega \subseteq \mathcal{R}^d$ for some $d \in \mathcal{N}$

Usual approximation approach:

- Define the value of the field at a finite number of *degrees of freedom* (DOFs)
- Interpolate in-between
 - Allows approximation of a field using a finite number of values $f(x_1), \ldots, f(x_n)$
“Sparse” Automatic Differentiation

- Choose the full function $f(\Omega)$, and derivatives w.r.t. all variables of the DOFs x_1, \ldots, x_n in Ω
- Since for any given DOF i, the discretized version of $f(x_i)$ only depends on the values of a small number of neighbors, most of the derivatives are zero
 - Sparse storage required because n is usually large
- Since n is correlated with the spatial domain size, it is only known at runtime
 - Dynamic memory management is required
- In OPM, this approach is implemented by $\text{Opm::AutoDiffBlock}$
“Dense” Automatic Differentiation

- Do not assume sparsity
- For reasonable performance, the number of derivatives per evaluation must be small
- Ideally, it is specified at compile time
 - Only allows a fixed number of derivatives
Compile-Time Dense-AD: Advantages

- No need for setup of a sparsity pattern
- Number of derivatives does not need to be stored at runtime
- No need for dynamic memory management
- Easier for the compiler to take advantage of SIMD instructions
 - Potentially better performance than sparse-AD
Compile-Time Dense-AD: Disadvantages

From a “reservoir simulator’s” point of view:

- May require fundamental changes to the linearization algorithm (cf. last year’s talk)
- The number of variables per DOF is fixed
 - Not easily applicable if the number of conservation quantities is specified at runtime
An “all domain” function function $r(Ω)$ can be linearized using compile time dense-AD:

- Loop over all DOFs x_i of the domain
- Compute the residual $r_i(x_i)$ of the current DOF and the derivatives $∂_i r_j(x_i)$ for the all DOFs j (this results in a dense system of equations of size n)
- For PDEs, the stencil is small; i.e. most derivatives of DOFs are zero and the dense system of equations thus is small
- Store the result in a sparse global Jacobian matrix and a global residual vector (this means to sum up the respective entries)
Evaluation of the residual of the whole stencil can be done efficiently with finite volume discretizations:

- The storage and source terms are evaluated with their derivatives w.r.t. to primary variables of DOF i
- For DOF i, $-F_{ij}$ are summed up
- The residuals of the stencil’s other DOFs j are only affected by the fluxes from i to j:
 $$\partial_i r_j = \partial_i F_{ij}$$
Overview

1. Automatic Differentiation

2. The OPM Dense-AD Implementation

3. Performance
The OPM Dense-AD Implementation

- Idea: Make function evaluations behave as much as primitive floating point values as possible
 - Implemented by
 \[\text{Opm::LocalAd::Evaluation<Scalar, numDeriv>} \]
 - Provides arithmetic, comparison and assignment operators
 - Optimized variants of all operators if one operand is a primitive floating point value
 - E.g. assignment of constant value \(c\) to any \text{Evaluation} object \(f\) is interpreted as constant function \(f(x) = c\)
 - Common functions from <cmath> are available
 - Evaluation objects can be transparently used as scalars for Dune’s linear algebra classes (e.g. Dune::FieldVector and Dune::FieldMatrix)

- Nesting possible: Evaluation can be used as scalar values for other Evaluation objects
Often code should work the same for primitive floating-point values and \texttt{Evaluation}.

Sometimes only the values (without derivatives) are of interest.

“Decaying” \texttt{Evaluation} objects sometimes needed:

- Ignore derivatives if left-hand-side is primitive, else pass through the right-hand-side.

\texttt{<cmath>} only deals with primitive values.
Math Toolboxes (II)

Solution:

- Templateize on the type of scalar values which is supposed to be used (can be an Evaluation or a primitive floating point type)
- Introduce the concept of a “math toolbox”:
 - Template class with specializations on Evaluation objects and on primitive floating point values
 - Provides access to the value of an object
 - Provides a defined way to decay objects
 - Provides the most common functions of <cmath>
Example: \(f(x) = \sin(x) \)

```cpp
template <class Eval>
Eval fn(const Eval& x) {
  return Opm::MathToolbox<Eval>::sin(x);
}

int main() {
  std::cout << fn(3.1415/5) << std::endl;

  typedef Opm::LocalAd::Evaluation<double, 1> Eval;
  Eval x(3.1415/5); x.derivatives[0] = 1.0;
  Eval y = fn(x);
  std::cout << y.value << " | " << y.derivatives[0]
            << std::endl;

  return 0;
}
```

This prints:

```
0.58777
0.58777 | 0.809028
```
Example: $\sin(xy) \cos(x^{2.5})$

```cpp
template <class Eval>
Eval fn(const Eval& x, const Eval& y) {
    typedef Opm::MathToolbox<Eval> Toolbox;
    return Toolbox::sin(x*y)*Toolbox::cos(Toolbox::pow(x, 2.5));
}

All other code stays identical! (after adjusting for the second variable)
```
Overview

1. Automatic Differentiation

2. The OPM Dense-AD Implementation

3. Performance
Micro-Benchmarks1: $f(x) = \sin(x)$

$$\partial_x f(x) = \cos(x)$$

Computations of $\partial_x f(x)$ and $f(x)$ per μ-sec on a i7-5930K CPU @ 3.5GHz:

Number of evaluations (with derivatives) per μ-second

1https://poware.org/aibi7osa/ubencheval.tar.gz
\(\mu\text{-Benchmarks II: } f(x, y) = \sin(xy) \cos(x^{2.5}) \)

\[
\frac{\partial}{\partial x} f(x, y) = \sin(xy) \left(y \cos(x^{2.5}) - 2.5 x^{1.5} \sin(x^{2.5}) \right)
\]

\[
\frac{\partial}{\partial y} f(x, y) = x \cos(xy) \cos(x^{2.5})
\]

Number of evaluations (with derivatives) per \(\mu\)-second
Performance: Reservoir Simulators

OPM provides two simulators, ebos and flow:

- flow uses the sparse AD approach
- ebos uses the dense AD approach
- Grid, deck processing, and material framework identical
- Code for the simulators themselves is completely disjoint
- Amount of resources that have been applied to flow is significantly larger
 - flow has seen quite a bit more performance related work
 - ebos should only be considered as an advanced prototype

The following results should be taken with a grain of salt!
Boring Problem: SPE-1

BHP of the production well vs. time
Large Boring Problem: Refined SPE1

BHP of the production well vs. time
Performance: Apples and Bananas

Overall time of the refined SPE1 problem. flow/ebos ratio: 2.11
Overall time of the refined SPE1 problem. flow/ebos ratio: 2.11

- flow required more iterations
Performance: Apples and Oranges

Time per Newton-iteration of the refined SPE1 problem. flow/ebos ratio: 1.39
Performance: Apples and Oranges

Time per Newton-iteration of the refined SPE1 problem. flow/ebos ratio: 1.39

- The linear solver used by flow is more performant
Performance: Green Apples and Red Apples

Linearization time per Newton iteration for the refined SPE1 problem.
flow/ebos ratio: 3.50
Linearization time per Newton iteration for the refined SPE1 problem. flow/ebos ratio: 3.50

- Remember: ebos should considered to be "just" an advanced prototype!
Summary

- Automatic differentiation allows to conveniently evaluate a function together with its derivatives.
- For discretized PDEs, AD can be used “globally” or “locally”.
- The “global” approach leads to sparse data structures.
- Compile-time dense-AD is more limited, but
 - Much simpler.
 - Convection-diffusion-type equations can be linearized.
 - Seems to perform better for linearizing convection-diffusion-type equations (if used in conjunction with a suitable linearization procedure).
Automatic differentiation allows to conveniently evaluate a function together with its derivatives.

For discretized PDEs, AD can be used “globally” or “locally”.

The “global” approach leads to sparse data structures.

Compile-time dense-AD is more limited, but:
 - Much simpler.
 - Convection-diffusion-type equations can be linearized.
 - Seems to perform better for linearizing convection-diffusion-type equations (if used in conjunction with a suitable linearization procedure).

Thank you for your attention.