The OPM Dense Automatic Differentiation
Framework

Andreas Lauser

June 1, 2016

y -

- POVVARE4

v



Overview y -
. Z_____POVVAR[4

Q Automatic Differentiation

e The OPM Dense-AD Implementation

Q Performance




Overview -
: 7 POWAREA

ﬂ Automatic Differentiation




(Forward) Automatic Differentiation -
. 7 — POWARS
I 4
@ For any differentiable function f(xq, ..., x,) always also
evaluate the derivatives with regard to a given set of
variables
@ i. e, for any given evaluation point x = (xy, ..., Xn),

compute f(x), Ox, f(X), . .., Ox,f(X)
@ Provide operators and “primitive” functions to define
composite functions (like residuals of PDEs)




_Sparse and Dense Automatic Differentiation

A‘
7 POWARS
4

Scalar field: Function f: Q — R were Q C R for some d € N
Usual approximation approach:
@ Define the value of the field at a finite number of degrees of
freedom (DOFs)
@ Interpolate in-between

o Allows approximation of a field using a finite number of
values f(x1), ..., f(xp)




“Sparse” Automatic Differentiation y -
. 7 POWARES

@ Choose the full function f(£2), and derivatives w.r.t. all
variables of the DOFs x4,...,X,in Q

@ Since for any given DOF i, the discretized version of f(x;)
only depends on the values of a small number of
neighbors, most of the derivatives are zero

@ Sparse storage required because n is usually large

@ Since nis correlated with the spatial domain size, it is only
known at runtime

e Dynamic memory management is required

@ In OPM, this approach is implemented by
Opm: :AutoDiffBlock




“Dense” Automatic Differentiation y -
: /7 POWARE4

@ Do not assume sparsity
@ For reasonable performance, the number of derivatives per
evaluation must be small
@ Ideally, it is specified at compile time
@ Only allows a fixed number of derivatives




Compile-Time Dense-AD: Advantages -
| = 7 — POWARIS

@ No need for setup of a sparsity pattern

@ Number of derivatives does not need to be stored at
runtime

@ No need for dynamic memory management

@ Easier for the compiler to take advantage of SIMD
instructions

e Potentially better performance than sparse-AD




Compile-Time Dense-AD: Disadvantages y -
' - 7 POVARE4

From a “reservoir simulator’s” point of view:
@ May require fundamental changes to the linearization
algorithm (cf. last year's talk)
@ The number of variables per DOF is fixed

o Not easily applicable if the number of conservation
quantities is specified at runtime




| Dense-AD for Finite-Volume-Methods

L
7 POVARE4
ﬁ

An “all domain” function function r(€2) can be linearized using
compile time dense-AD:

@ Loop over all DOFs x; of the domain

@ Compute the residual ri(x;) of the current DOF and the
derivatives 0jr;j(x;) for the all DOFs j (this results in a dense system
of equations of size n)

@ For PDEs, the stencil is small; i.e. most derivatives of
DOFs are zero and the dense system of equations thus is
small

@ Store the result in a sparse global Jacobian matrix and a
global residual vector (this means to sum up the respective entries)




_Dense-AD for Finite-Volume-Methods (cont)

y - ]
7 POWARE4

Evaluation of the residual of the whole
stencil can be done efficiently with finite
volume discretizations:

@ The storage and source terms are evaluated with their
derivatives w.r.t. to primary variables of DOF i

@ For DOF /, —Fj; are summed up

@ The residuals of the stencil’s other DOFs j are only
affected by the fluxes from j to j:

(4] 8,'[’/ = 5',']'—,]'




Overview y -
. 7 POVWARES

9 The OPM Dense-AD Implementation




The OPM Dense-AD Implementation

L
7 POVARE4
ﬁ

@ |ldea: Make function evaluations behave as much as
primitive floating point values as possible

Implemented by
Opm: :LocalAd: :Evaluation<Scalar, numDeriv>
Provides arithmetic, comparison and assignment operators
Optimized variants of all operators if one operand is a
primitive floating point value

@ E.g. assignment of constant value ¢ to any Evaluation

object £ is interpreted as constant function f(x) = ¢

Common functions from <cmath> are available
Evaluation objects can be transparently used as scalars
for Dune’s linear algebra classes (e.g.
Dune::FieldVector and Dune: :FieldMatrix)

@ Nesting possible: Evaluation can be used as scalar
values for other Evaluation objects




| Math Toolboxes

y - ]
7 POWARE4

@ Often code should work the same for primitive
floating-point values and Evaluation
@ Sometimes only the values (without derivatives) are of
interest
@ “Decaying” Evaluation objects sometimes needed:
e Ignore derivatives if left-hand-side is primitive, else pass
through the right-hand-side

@ <cmath> only deals with primitive values




_Math Toolboxes (1l)

7 POVVARE4
-y

Solution:

@ Templateize on the type of scalar values which is
supposed to be used (can be an Evaluation ora
primitive floating point type)

@ Introduce the concept of a “math toolbox”:

e Template class with specializations on Evaluation
objects and on primitive floating point values

e Provides access to the value of an object

e Provides a defined way to decay objects

e Provides the most common functions of <cmath>




_Example: f(x) = sin(x)

L §
Z_____POVVAR[4
4

template <class Eval>
Eval fn(const Eval& x) {
return Opm::MathToolbox<Eval>::sin (x);

int main () {
std::cout << fn(3.1415/5) << std::endl;

typedef Opm::LocalAd::Evaluation<double, 1> Eval;

Eval x(3.1415/5); x.derivatives[0] = 1.0;
Eval y = fn(x);
std::cout << y.value << " | " << y.derivatives[O0]
<< std::endl;
return O;
}
This prints:
0.58777

0.58777 | 0.809028




_Example: sin(xy) cos(x*°)

/7 POWARL4
template <class Eval>
Eval fn(const Evalé& x, const Evals& y) {

typedef Opm::MathToolbox<Eval> Toolbox;

return Toolbox::sin(x*y)*Toolbox::cos (Toolbox: :pow(x, 2.5));
}

All other code stays identical! (after adjusting for the second variable)




Overview -
: Z_____POVWAR4

Q Performance




_Micro-Benchmarks' : f(x) = sin(x) y —u—

Oxf(x) = cos(x)

Computations of dxf(x) and f(x) per u-sec on a i7-5930K CPU
@ 3.5GHz:

analytic ad fd

Number of evaluations (with derivatives) per u-second

1https ://poware.org/aibi7osa/ubencheval.tar.gz

e



https://poware.org/aibi7osa/ubencheval.tar.gz

_u-Benchmarks Il: f(x, y) = sin(xy) cos(x>°)

7 POVVARE4
-y

Ixf(x,y) = sin(xy) (y cos(x?°) — 2.5 x15 sin(x2'5))

dyf(x,y) = x cos(xy) cos(x?°)

T
evals/usec mm—

ad fd

Number of evaluations (with derivatives) per u-second

e




Performance: Reservoir Simulators

L
7 POVARE4
ﬁ

OPM provides two simulators, ebos and flow:
@ flow uses the sparse AD approach
@ ebos uses the dense AD approach
@ Grid, deck processing, and material framework identical

@ Code for the simulators themselves is completely disjoint
@ Amount of resources that have been applied to flow is
significantly larger
o flow has seen quite a bit more performance related work
e ebos should only be considered as an advanced prototype

The following results should be taken with a grain of salt!




| Boring Problem: SPE-1

7 POVVARE4

4500

3500

2500

BHP producer [PSI]




| Large Boring Problem: Refined SPE1

7 POVVARE4

BHP producer [PSI]




_Performance: Apples and Bananas

6000

5000 |-

4000 -

3000 -

2000

1000 -

0

Overall time of the refined SPE1 problem. flow/ebos ratio: 2.11

CPU time [s]

ebos flow

y - }
7 POWAR4




_Performance: Apples and Bananas

6000

5000 |-

4000 -

3000 -

2000

1000 -

0

Overall time of the refined SPE1 problem. flow/ebos ratio: 2.11

CPU time [s]

ebos flow

@ flow required more iterations

y - }
7 POWAR4




_Performance: Apples and Oranges

y - ]
7 POWARES

CPU time per iteration [s]

ebos flow

Time per Newton-iteration of the refined SPE1 problem. flow/ebos ratio: 1.39




_Performance: Apples and Oranges

y - ]
7 POWARES

CPU time per iteration [s]

ebos flow

Time per Newton-iteration of the refined SPE1 problem. flow/ebos ratio: 1.39

@ The linear solver used by flow is more performant




_Performance: Green Apples and Red Apples

y - }
7 POWAR4

CPU time per linearization [s]

Linearization time per Newton iteration for the refined SPE1 problem.
flow/ebos ratio: 3.50




_Performance: Green Apples and Red Apples

y - }
7 POWAR4

CPU time per linearization [s]

ebos flow

Linearization time per Newton iteration for the refined SPE1 problem.
flow/ebos ratio: 3.50

@ Remember: ebos should considered to be "just” an
advanced prototype!




_Summary

L
7 POVARE4
ﬁ

@ Automatic differentiation allows to conveniently evaluate a
function together with its derivatives

@ For discretized PDEs, AD can be used “globally” or “locally”

@ The “global” approach leads to sparse data structures
@ Compile-time dense-AD is more limited, but
e Much simpler
e Convection-diffusion-type equations can be linearized
e Seems to perform better for linearizing
convection-diffusion-type equations (if used in conjunction with a
suitable linearization procedure)




_Summary

L
7 POVARE4
ﬁ

@ Automatic differentiation allows to conveniently evaluate a
function together with its derivatives

@ For discretized PDEs, AD can be used “globally” or “locally”

@ The “global” approach leads to sparse data structures
@ Compile-time dense-AD is more limited, but
e Much simpler
e Convection-diffusion-type equations can be linearized
e Seems to perform better for linearizing
convection-diffusion-type equations (if used in conjunction with a
suitable linearization procedure)

Thank you for your attention.




