
POWARE

The OPM Dense Automatic Differentiation
Framework

Andreas Lauser

June 1, 2016



POWARE
Overview

1 Automatic Differentiation

2 The OPM Dense-AD Implementation

3 Performance



POWARE
Overview

1 Automatic Differentiation

2 The OPM Dense-AD Implementation

3 Performance



POWARE
(Forward) Automatic Differentiation

For any differentiable function f(x1, . . . , xn) always also
evaluate the derivatives with regard to a given set of
variables
i. e., for any given evaluation point x = (x1, . . . , xn),
compute f(x), ∂x1 f(x), . . . , ∂xn f(x)

Provide operators and “primitive” functions to define
composite functions (like residuals of PDEs)



POWARE
Sparse and Dense Automatic Differentiation

Scalar field: Function f : Ω 7→ R were Ω ⊆ Rd for some d ∈ N
Usual approximation approach:

Define the value of the field at a finite number of degrees of
freedom (DOFs)
Interpolate in-between

Allows approximation of a field using a finite number of
values f(x1), . . . , f(xn)



POWARE
“Sparse” Automatic Differentiation

Choose the full function f(Ω), and derivatives w.r.t. all
variables of the DOFs x1, . . . ,xn in Ω

Since for any given DOF i , the discretized version of f(xi)
only depends on the values of a small number of
neighbors, most of the derivatives are zero

Sparse storage required because n is usually large
Since n is correlated with the spatial domain size, it is only
known at runtime

Dynamic memory management is required

In OPM, this approach is implemented by
Opm::AutoDiffBlock



POWARE
“Dense” Automatic Differentiation

Do not assume sparsity
For reasonable performance, the number of derivatives per
evaluation must be small
Ideally, it is specified at compile time

Only allows a fixed number of derivatives



POWARE
Compile-Time Dense-AD: Advantages

No need for setup of a sparsity pattern
Number of derivatives does not need to be stored at
runtime
No need for dynamic memory management
Easier for the compiler to take advantage of SIMD
instructions

Potentially better performance than sparse-AD



POWARE
Compile-Time Dense-AD: Disadvantages

From a “reservoir simulator’s” point of view:
May require fundamental changes to the linearization
algorithm (cf. last year’s talk)

The number of variables per DOF is fixed
Not easily applicable if the number of conservation
quantities is specified at runtime



POWARE
Dense-AD for Finite-Volume-Methods

An “all domain” function function r(Ω) can be linearized using
compile time dense-AD:

Loop over all DOFs xi of the domain
Compute the residual ri(xi) of the current DOF and the
derivatives ∂i rj(xi) for the all DOFs j (this results in a dense system

of equations of size n)

For PDEs, the stencil is small; i.e. most derivatives of
DOFs are zero and the dense system of equations thus is
small
Store the result in a sparse global Jacobian matrix and a
global residual vector (this means to sum up the respective entries)



POWARE
Dense-AD for Finite-Volume-Methods (cont)

Evaluation of the residual of the whole
stencil can be done efficiently with finite
volume discretizations:

The storage and source terms are evaluated with their
derivatives w.r.t. to primary variables of DOF i
For DOF i , −Fij are summed up
The residuals of the stencil’s other DOFs j are only
affected by the fluxes from i to j :

∂i rj = ∂iFij



POWARE
Overview

1 Automatic Differentiation

2 The OPM Dense-AD Implementation

3 Performance



POWARE
The OPM Dense-AD Implementation

Idea: Make function evaluations behave as much as
primitive floating point values as possible

Implemented by
Opm::LocalAd::Evaluation<Scalar, numDeriv>
Provides arithmetic, comparison and assignment operators
Optimized variants of all operators if one operand is a
primitive floating point value

E.g. assignment of constant value c to any Evaluation
object f is interpreted as constant function f(x) = c

Common functions from <cmath> are available
Evaluation objects can be transparently used as scalars
for Dune’s linear algebra classes (e.g.
Dune::FieldVector and Dune::FieldMatrix)

Nesting possible: Evaluation can be used as scalar
values for other Evaluation objects



POWARE
Math Toolboxes

Often code should work the same for primitive
floating-point values and Evaluation

Sometimes only the values (without derivatives) are of
interest
“Decaying” Evaluation objects sometimes needed:

Ignore derivatives if left-hand-side is primitive, else pass
through the right-hand-side

<cmath> only deals with primitive values



POWARE
Math Toolboxes (II)

Solution:
Templateize on the type of scalar values which is
supposed to be used (can be an Evaluation or a
primitive floating point type)
Introduce the concept of a “math toolbox”:

Template class with specializations on Evaluation
objects and on primitive floating point values
Provides access to the value of an object
Provides a defined way to decay objects
Provides the most common functions of <cmath>



POWARE
Example: f(x) = sin(x)

template <class Eval>
Eval fn(const Eval& x) {

return Opm::MathToolbox<Eval>::sin(x);
}

int main() {
std::cout << fn(3.1415/5) << std::endl;

typedef Opm::LocalAd::Evaluation<double, 1> Eval;
Eval x(3.1415/5); x.derivatives[0] = 1.0;
Eval y = fn(x);
std::cout << y.value << " | " << y.derivatives[0]

<< std::endl;
return 0;

}

This prints:
0.58777
0.58777 | 0.809028



POWARE
Example: sin(xy) cos(x2.5)

template <class Eval>
Eval fn(const Eval& x, const Eval& y) {

typedef Opm::MathToolbox<Eval> Toolbox;
return Toolbox::sin(x*y)*Toolbox::cos(Toolbox::pow(x, 2.5));

}

All other code stays identical! (after adjusting for the second variable)



POWARE
Overview

1 Automatic Differentiation

2 The OPM Dense-AD Implementation

3 Performance



POWARE
Micro-Benchmarks1: f (x) = sin(x)

∂x f (x) = cos(x)

Computations of ∂x f (x) and f (x) per µ-sec on a i7-5930K CPU
@ 3.5GHz:

Number of evaluations (with derivatives) per µ-second

1https://poware.org/aibi7osa/ubencheval.tar.gz

https://poware.org/aibi7osa/ubencheval.tar.gz


POWARE
µ-Benchmarks II: f (x , y) = sin(xy) cos(x2.5)

∂x f (x , y) = sin(xy)
(

y cos(x2.5)− 2.5 x1.5 sin(x2.5)
)

∂y f (x , y) = x cos(xy) cos(x2.5)

Number of evaluations (with derivatives) per µ-second



POWARE
Performance: Reservoir Simulators

OPM provides two simulators, ebos and flow:
flow uses the sparse AD approach
ebos uses the dense AD approach
Grid, deck processing, and material framework identical
Code for the simulators themselves is completely disjoint
Amount of resources that have been applied to flow is
significantly larger

flow has seen quite a bit more performance related work
ebos should only be considered as an advanced prototype

The following results should be taken with a grain of salt!



POWARE
Boring Problem: SPE-1

BHP of the production well vs. time



POWARE
Large Boring Problem: Refined SPE1

BHP of the production well vs. timexs



POWARE
Performance: Apples and Bananas

Overall time of the refined SPE1 problem. flow/ebos ratio: 2.11

flow required more iterations



POWARE
Performance: Apples and Bananas

Overall time of the refined SPE1 problem. flow/ebos ratio: 2.11

flow required more iterations



POWARE
Performance: Apples and Oranges

Time per Newton-iteration of the refined SPE1 problem. flow/ebos ratio: 1.39

The linear solver used by flow is more performant



POWARE
Performance: Apples and Oranges

Time per Newton-iteration of the refined SPE1 problem. flow/ebos ratio: 1.39

The linear solver used by flow is more performant



POWARE
Performance: Green Apples and Red Apples

Linearization time per Newton iteration for the refined SPE1 problem.

flow/ebos ratio: 3.50

Remember: ebos should considered to be "just" an
advanced prototype!



POWARE
Performance: Green Apples and Red Apples

Linearization time per Newton iteration for the refined SPE1 problem.

flow/ebos ratio: 3.50

Remember: ebos should considered to be "just" an
advanced prototype!



POWARE
Summary

Automatic differentiation allows to conveniently evaluate a
function together with its derivatives
For discretized PDEs, AD can be used “globally” or “locally”
The “global” approach leads to sparse data structures
Compile-time dense-AD is more limited, but

Much simpler
Convection-diffusion-type equations can be linearized
Seems to perform better for linearizing
convection-diffusion-type equations (if used in conjunction with a
suitable linearization procedure)

Thank you for your attention.



POWARE
Summary

Automatic differentiation allows to conveniently evaluate a
function together with its derivatives
For discretized PDEs, AD can be used “globally” or “locally”
The “global” approach leads to sparse data structures
Compile-time dense-AD is more limited, but

Much simpler
Convection-diffusion-type equations can be linearized
Seems to perform better for linearizing
convection-diffusion-type equations (if used in conjunction with a
suitable linearization procedure)

Thank you for your attention.


