

Polymer Simulator in OPM

Liu Ming

Content

- Polymer flooding introduction
- Polymer simulation model
- Current polymer simulator status
- Examples
- The way forward

Motivation

- Currently, Statoil uses Eclipse and CMG STARS.
- These simulators are proprietary.
- A platform for testing new algorithms and functionalities.
- Share the modern reservoir simulator infrastructure.

Polymer Flooding - Introduction

Large polymer molecules

Reduced water mobility

Improved sweep

Increased water viscosity

Macroscopic sweep improvement

Adsorbed polumer

EOR by Polymer Flood - Targets

$$f_w(S_w) = \frac{1}{1 + \frac{1}{M}}$$

$$M = \frac{k_{rw}}{\mu_w} / \frac{k_{ro}}{\mu_o}$$

Reduce SOR

- Change wettability: ?
- Viscoelastic effects: ?
- Reduce M
 - Reduce K_w: Yes
 - Increase μ_w: Yes
 - Increase K_o: No
 - Decrease μ_o: No

Polymer Flooding – Important parameters

Viscosity	dependent on polymer concentration and shear rate. Rheology shear thinning or shear thickening
Adsorption	unit: μg/g rock
RRF	Residual resistance factor or residual permeability reduction factor
IPV	Inaccessible pore volume
Mixing	Water and polymer mixing, Todd-Long staff model

Non-Newtonian Behavior

$$\mu = k \cdot \gamma^{n-1}$$

$$\mu_{sh} = \mu_{w, eff} \left[\frac{1 + (P-1)M}{P} \right]$$

Degradation effects

• Degratation effects for different injection rate and temperature

Mathematical model

$$\frac{d}{dt} \left(\frac{V^* S_w C_p}{B_r B_w} \right) + \frac{d}{dt} \left(V \rho_r C_p^a \frac{1 - \phi}{\phi} \right) \\ = \sum \left[\frac{T k_{rw}}{B_w \mu_{p \text{ eff}} R_k} (\delta P_w - \rho_w g D_z) \right] C_p + Q_w C_p$$

$$V^* = V(1 - S_{\rm dpv})$$

$$R_k(c^a) = 1 + rac{\mathsf{RRF} - 1}{\mathsf{max} \; \mathsf{ads}} c^a$$

$$\mu_{p,eff} = \mu_m(c)^\omega \mu_p^{1-\omega}$$

$$rac{1}{\mu_{ extit{W,eff}}} = rac{1 - c/c_{ extit{max}}}{\mu_{ extit{W,e}}} + rac{c/c_{ extit{max}}}{\mu_{ extit{p,eff}}}$$

$$\mu_{\mathsf{W},\mathsf{e}} = \mu_{\mathsf{m}}(c)^{\omega} \mu_{\mathsf{W}}^{1-\omega}$$

Current status

- Fully implicit blackoil (water-oil) + polymer simulators, flow_polymer, ready for use.
- Water-oil-polymer simulators based on operator splitting algorithm.
- Same functionalities with Eclipse except thermal degradation.
 - IPV
 - Adsorption
 - Permeability reduction
 - Mixing Parameter
 - Non-Newtonian behavior (by Kai Bao)

Example-SAIGUP study

- 96000cells
- Permeability distribution

Well results

Example--3D with shear effects

Properties

Initial distribution

Shear effects

Shear-thickening

Shear-thinning

The way forward

- Performance
- Degradation model
- Injectivity calculator
- Core-flooding?

Thank you!

There's never been a better time for good ideas

Presentation title

Presenters name: Ming Liu

Presenters title: Senior Researcher

Petroleum Engineer

E-mail address: miliu@statoil.com

Tel: +86 13811965410

www.statoil.com

