Monotone nonlinear Finite Volume Scheme for Flow in Porous Media

OPM Meeting, June 1st, 2016

Martin Schneider, Bernd Flemisch, Rainer Helmig
University of Stuttgart

Kirill Terekhov, Hamdi Tchelepi
Stanford University
Overview DuMuX

- **DuMuX:** DUNE for Multi-{Phase, Component, Scale, Physics, ...} Flow and Transport in Porous Media
- Development started 2007
- Based on DUNE

 ![Dune](image)

 Distributed and Unified Numerics Environment

- Current release: 2.9 (March 2016, git repository)
- Recently started to use opm-grid (corner-point grids), “straight forward” because of the dune grid interface
- Interesting for us: using other opm modules like upscaling …
Why nonlinear Finite Volume Methods?

Desirable features:

- **accuracy**
 - locally mass conservative

- **efficiency**
 - sparse matrices

- **flexibility**
 - unstructured grids
 - anisotropic, heterogeneous tensors

- **discretization**
 - MPFA
 - Mixed Finite Element
 - Mimetic Finite Difference

June 1st, 2016 OPM Meeting
Why nonlinear Finite Volume Methods?

Desirable features:

- **accuracy**
 - locally mass conservative
 - monotone
 - extremum principles

- **efficiency**
 - sparse matrices

- **flexibility**
 - unstructured grids
 - anisotropic, heterogeneous tensors

- **discretization**
 - MPFA
 - Mixed Finite Element
 - Mimetic Finite Difference
 - Nonlinear Schemes
Idea of flux calculation

Flux Approximation: (elliptic equation)

\[- \nabla \cdot (K \nabla p) = q \quad \rightarrow \quad -\int_{\partial V_i} (K \nabla p) \cdot n \, dS = \int_{V_i} q \, dV\]

\[K = K^T, \quad d := K \cdot n \quad \rightarrow \quad -\sum_{\sigma} \int_{\sigma} \nabla p \cdot d \, dS = \int_{V_i} q \, dV\]

For each cell face \(\sigma \subset \partial V_i\) approximate the fluxes

\[f_\sigma = -|\sigma| \nabla p \cdot d, \quad d := K \cdot n\]
Idea of flux calculation for homogeneous permeability tensor

\[f_1 = -|\sigma| \nabla p \cdot d, \quad d := K \cdot n \]

Conormal decomposition:
Idea of flux calculation for homogeneous permeability tensor

\[f_1 = -|\sigma| \left(\alpha_1 (p_j - p_i) + \right) \]

conormal decomposition:
Idea of flux calculation for homogeneous permeability tensor

\[f_1 = -|\sigma| (\alpha_1 (p_j - p_i) + \alpha_2 (p_k - p_i)) \]

conormal decomposition:
Idea of flux calculation for homogeneous permeability tensor

\[f_1 = -|\sigma| (\alpha_1 (p_j - p_i) + \alpha_2 (p_k - p_i)) \quad f_2 = -|\sigma| (\beta_1 (p_i - p_j) + \beta_2 (p_l - p_j)) \]

conormal decomposition: \(\alpha, \beta \geq 0\)

averaging
Averaged Flux Approximation

\[f_\sigma := \mu_1 f_1 - \mu_2 f_2, \quad \mu_1 + \mu_2 = 1, \quad 0 \leq \mu_1, \mu_2 \leq 1 \]

\[= |\sigma| (\mu_1 (\alpha_1 + \alpha_2) + \mu_2 \beta_1) p_i \]
\[- |\sigma| (\mu_2 (\beta_1 + \beta_2) + \mu_1 \alpha_1) p_j \]
\[- |\sigma| (\mu_1 \alpha_2 p_k - \mu_2 \beta_2 p_l) \]

Possible choice: \(\mu_1 = \mu_2 = 0.5 \)

Averaged Multi-Point Flux Approximation: AvgMPFA
Averaged Flux Approximation

\[f_\sigma := \mu_1 f_1 - \mu_2 f_2, \quad \mu_1 + \mu_2 = 1, \quad 0 \leq \mu_1, \mu_2 \leq 1 \]

\[= |\sigma| (\mu_1 (\alpha_1 + \alpha_2) + \mu_2 \beta_1) p_i \]
\[- |\sigma| (\mu_2 (\beta_1 + \beta_2) + \mu_1 \alpha_1) p_j \]
\[- |\sigma| (\mu_1 \alpha_2 p_k - \mu_2 \beta_2 p_l) \]
\[\overset{1}{=} 0 \]

\[\rightarrow f_\sigma = t_1(p_k, p_l)p_i - t_2(p_k, p_l)p_j \]

Nonlinear Flux Approximation: NLTPFA

Heterogeneous permeability tensor

Harmonic Averaging Point: \[\overline{p}_\sigma = \frac{c_i p_i + c_j p_j}{c_i + c_j} \]

\[\overline{x}_\sigma = \frac{c_i x_i + c_j x_j + (K_i - K_j) n_{ij}}{c_i + c_j} \]

\[c_i = \frac{n_{ij} \cdot K_i \cdot n_{ij}}{\text{dist}(x_i, \sigma)} \]

\[c_j = \frac{n_{ij} \cdot K_j \cdot n_{ij}}{\text{dist}(x_j, \sigma)} \]

Agélás et al., "A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media."
Generalization of conormal decomposition
Generalization of conormal decomposition

\[
\min_{\alpha \in \mathbb{R}^{NF}} F(\alpha)
\]

subject to

\[
d_\sigma = A\alpha
\]

\[
\sum \alpha_i \geq c, \quad \alpha_i \geq 0
\]

\[
A = (x_{\sigma_1} - x_c, \ldots, x_{\sigma_{NF}} - x_c)
\]

example:

\[
F(\alpha) = \sum \alpha_i
\]
Generalization of conormal decomposition

\[
\min_{\gamma \geq 0, \alpha \in \mathbb{R}^{NF}} \kappa \gamma + F(\alpha)
\]

subject to \(d_\sigma = A\alpha \)

\[
\sum \alpha_i \geq c, \quad \alpha_i \geq -\gamma
\]

\[
A = (x_{\sigma_1} - x_c, \ldots, x_{\sigma_{NF}} - x_c)
\]

example:

\[
F(\alpha) = \sum \alpha_i
\]

\[
\kappa \gg F(\alpha)
\]

If \(\gamma > 0 \) then there exists no conormal decomposition with only positive coefficients.

June 1st, 2016

OPM Meeting
Modification of nonlinear TPFA

\[f_{\sigma} = t_1(\mu_1, \mu_2)p_i - t_2(\mu_1, \mu_2)p_j \]

\[\underbrace{-\mu_1 \lambda_1 + \mu_2 \lambda_2} \]

\[: R_{\sigma} = 0 \]

\[\lambda_1 := \sum \alpha_{k,j} p_j, \quad \lambda_2 := \sum \alpha_{l,j} p_j. \]

\[\rightarrow R_{\sigma} = 0, \quad \text{if } \lambda_1 \lambda_2 > 0 \]

\[\text{if } \lambda_1 \lambda_2 < 0 : \quad f_{\sigma} = \left(t_1(\mu_1, \mu_2) + \frac{|R_{\sigma}| + R_{\sigma}}{2(p_i + \varepsilon)} \right) p_i \]

\[- \left(t_2(\mu_1, \mu_2) + \frac{|R_{\sigma}| - R_{\sigma}}{2(p_j + \varepsilon)} \right) p_j \]
Literature overview NLTPFA

Existing results in literature:

- proof of monotonicity
- convergence behavior for elliptic equation (numerically)
 (second order for pressure, first order for flux)

Focus of this talk:

- comparison with commonly used linear schemes
- influence of additional nonlinearity due to nonlinear flux approximation
- challenging grids
- complex physics
Monotonicity

\[-\nabla \cdot (K \nabla p) = 0, \quad \Omega = [0, 1] \times [0, 1],\]

Setting:

\[p = 0\]

\[p = 10^5\]

\[K\]

\[K = R\left(\frac{\pi}{6}\right) \begin{pmatrix} 1000 & 0 \\ 0 & 1 \end{pmatrix} R\left(\frac{\pi}{6}\right)^{-1}\]
Monotonicity

NLTPFA (nnz 192544)

AvgMPFA (nnz 192544)

TPFA (nnz 132800)

MPFA-L (nnz 185883)

MPFA-O (nnz 238372)

Box (nnz 241152)

June 1st, 2016

OPM Meeting
Monotonicity

NLTPFA

AvgMPFA ~2.5%

TPFA

MPFA-L ~3%

MPFA-O ~7%

Box ~2.2%

June 1st, 2016

OPM Meeting

20
Properties of NLTPFA

• second order accuracy for pressure, first order for flux (numerical results)

• monotonicity
Challenging grids (corner-point grids)

- curved faces
- degenerated points
- degenerated faces
- non-convex cells
- centroid outside of cell
- non-matching grids

opm-grid
Example: non-matching grid

Setting:

\[\Omega_1 \]

\[\Omega_2 \]

generated with MRST

\[\mathbf{K}_1 = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\mathbf{K}_2 = \begin{pmatrix} 10 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[p_1 = 6x + 1.6y + 4xy - 2y^2 + z + 1.4 \]

\[p_2 = x + 2.8y + 2xy - 2y^2 + z + 4.4 \]
Example: non-matching grid
Example: non-matching grid

\[e_p = 2.74 \cdot 10^{-4} \]

\[e_p = 7.02 \cdot 10^{-5} \]

\[|p_{ex} - p_h| \]

\[O(h^2) \]

\[e_p = 1.77 \cdot 10^{-5} \]

\[|p_{ex} - p_h| \]
Example: corner-point grid

Setting:

- Cell volumes differ by five orders of magnitude
- optimization: approx. 7% of cells with negative coefficients

opm-grid
Example: corner-point grid

Setting:

\[p = 1 \cdot 10^5 \text{ Pa} \]

\[p = 2 \cdot 10^5 \text{ Pa} \]

- Cell volumes differ by five orders of magnitude
- Optimization: approx. 7% of cells with negative coefficients

opm-grid
Example: corner-point grid

- Grid
 - 5m
 - 62.5m
 - 125m

- Exact
 - \(p_{\text{exact}} \)
 - 2.0e+05
 - 1.7e+05
 - 1.5e+05
 - 1.3e+05
 - 1.0e+05

- Linear TPFA
- Nonlinear TPFA

June 1st, 2016
OPM Meeting
Example: corner-point grid

grid

5m

62.5m

125m

exact

p_{exact}

linear TPFA

$|p_{exact} - p_{tpfa}|$

nonlinear TPFA

$|p_{exact} - p_{ntpfa}|$

June 1st, 2016

OPM Meeting
Example: corner-point grid

grid

5m
62.5m
125m

exact

\(p_{\text{exact}} \)

linear TPFA

\[|p_{\text{exact}} - p_{\text{tpfa}}| \]

nonlinear TPFA

\[|p_{\text{exact}} - p_{\text{ntpfa}}| \]

June 1st, 2016

OPM Meeting
Example: corner-point grid

grid

125m

5m

62.5m

exact

linear TPFA

$p_{exact} - p_{tpfa}$

$|p_{exact} - p_{tpfa}|$

nonlinear TPFA

$|p_{exact} - p_{ntpfa}|$

June 1st, 2016
OPM Meeting
Example: corner-point grid

nonlinear TPFA
Example: corner-point grid

nonlinear TPFA

opm-grid
Properties of NLTPFA

• second order accuracy for pressure, first order for flux (numerical results)

• monotonicity

• handling of complex grids like corner-point grids
Comparison of different schemes

Setting:

- \(p_w = 2 \cdot 10^5 \text{ Pa} \)
- \(S_w = 1 \)
- \(S_{w,\text{init}} = 0 \)
- \(u_w = 0 \)
- \(u_n = \frac{1.5 \cdot 10^{-3}}{1460} \text{ m/s} \)

- incompressible two-phase flow
- no gravity
- no capillary pressure
Comparison of different schemes

Setting 1:

Setting 2:

Setting 3: permeability distribution

Setting 4:
Comparison of different schemes

Setting 1:

Setting 2:

Setting 3:

Setting 4:

NLTPFA solution

similar results for all schemes:

AvgMPFA
Box
TPFA
MPFA-L
MPFA-O
Comparison of different schemes

- NLTPFA
- AvgMPFA
- MPFA-L
- MPFA-O
- Box
- TPFA

Total Newton iter vs setting

June 1st, 2016
OPM Meeting
Comparison of different schemes

\[\bar{\kappa} = \frac{\sum_i \Delta t_i \sqrt{\kappa_1(J_i)\kappa_\infty(J_i)}}{\sum_i \Delta t_i} \]

Condition number influences iterative solver behavior
Comparison of different schemes

BiCGStab solver with ILUn preconditioning
Properties of NLTPFA

- second order accuracy for pressure, first order for flux (numerical results)
- monotonicity
- handling of complex grids like corner-point grids
- NLTPFA behaves better than corresponding linear scheme (AvgMPFA)
- linear and nonlinear solvers behave similar to linear schemes
More complex example

Compressible two-phase two-component nonisothermal (2p2cni) flow equations:

Mass balance:

\[
\phi \frac{\partial (\sum_{\alpha} \rho_{mol,\alpha} x_\alpha^\kappa S_\alpha)}{\partial t} - \sum_{\alpha} \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \rho_{mol,\alpha} x_\alpha^\kappa K (\nabla p_\alpha - \rho_\alpha g) \right\} - \sum_{\alpha} \text{div} \left\{ \tau \phi S_\alpha \rho_{mol,\alpha} D_\alpha^\kappa \nabla x_\alpha^\kappa \right\} - q^\kappa = 0, \quad \kappa \in \{\text{CO}_2, \text{Brine}\}.
\]

Energy balance:

\[
\phi \frac{\partial (\sum_{\alpha} \rho_\alpha u_\alpha S_\alpha)}{\partial t} + (1 - \phi) \frac{\partial \rho_s c_s T}{\partial t} - \text{div}(\lambda_{pm} \nabla T) - \sum_{\alpha} \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \rho_\alpha h_\alpha K (\nabla p_\alpha - \rho_\alpha g) \right\} - q^h = 0.
\]

June 1st, 2016
OPM Meeting
Numerical Examples

Setting:

- $k = 10^{-19}, \quad \phi = 0.001$
- $k = 10^{-15}, \quad \phi = 0.05$
- $k = 3.0 \cdot 10^{-14}, \quad \phi = 0.2$

Simulation Time:

~6.3 years

CO₂ Injection

Unstructured Grid:

Cell Areas:

June 1st, 2016

OPM Meeting
Solution of NLTPFA

After grid refinement, ~60000 cells

\(S_n \)

\(p_n \)

\(x_w^{Brine} \)

\(T \)
Adaptive Grid

TPFA:

NLTPFA:

S_n

0.00

0.280

0.278

0.557

0.835

0.839

0.559

0.280

0.557

0.835

0.839
Properties of NLTPFA

- second order accuracy for pressure, first order for flux (numerical results)
- monotonicity
- handling of complex grids like corner-point grids
- NLTPFA behaves better than corresponding linear scheme (AvgMPFA)
- linear and nonlinear solvers behave similar to linear schemes
- (straight forward) applicability for physically complex nonlinear equations (2p2cni)
Conclusion

• second order accuracy for pressure, first order for flux (numerical results)

• monotonicity

• handling of complex grids like corner-point grids

• NLTPFA behaves better than corresponding linear scheme (AvgMPFA)

• linear and nonlinear solvers behave similar to linear schemes

• (straight forward) applicability for physically complex nonlinear equations (2p2cni)

Conclusion

- second order accuracy for pressure, first order for flux (numerical results)
- monotonicity
- handling of complex grids like corner-point grids
- NLTPFA behaves better than corresponding linear scheme (AvgMPFA)
- linear and nonlinear solvers behave similar to linear schemes
- (straight forward) applicability for physically complex nonlinear equations (2p2cni)
Implementation in DuMu\(^X\)

dumux-stable:
Box and TPFA method for fully-implicit porous media flow

current development:
- Unification of finite volume schemes for fully-implicit models (linear and nonlinear schemes)
- Schemes differ in face stencil classes, which provide iterators for flux calculation or matrix assembly
- Generalization of *fvGeometry*, *fluxVars*, … classes, to be able to handle grids like corner-point grids (dynamic implementation)
- Models independent of discretization
Thank you very much!

References:

