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What is reservoir simulation

Simulation of porous medium flow in subsurface reservoirs.

Examples of use:

I Energy industry
I Forecasting and optimizing oil and gas production.
I Forecasting and optimizing geothermal energy production.

I Environmental management
I Groundwater flows and pollutants
I CO2storage

Reservoir simulators solve systems of nonlinear PDEs
that are coupled to well/facility models.
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Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.
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Why does it require HPC/Cloud

I Model sizes increasing (Saudi-Aramco record: 1e12 cells)

I Model complexity increasing (well/facility models, fluid models)

I New mechanisms (polymer, CO2) require better resolved fronts

I Large ensembles for history matching, optimization, uncertainty
quantification
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The market situation

Commercial reservoir simulators (expensive but comprehensive):

I ECLIPSE, Intersect (Schlumberger)

I IMEX, GEM, STARS (CMG)

I Nexus (Landmark)

I tNavigator (Rock Flow Dynamics)

I ...

In-house simulators (unavailable to outsiders):

I (Tera)POWERS (Saudi-Aramco)

I MoReS (Shell)

I GPRS (Stanford University)

I ...

Open source simulators:

I OPM Flow

I MRST (Sintef)
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OPM Flow at a glance

I Open source

I Handling cases of full industrial
complexity (wells, properties)

I Competitive performance

I Currently used to study (for
example):

I Oil production: history
matching and prediction of
field performance

I Enhanced oil recovery: CO2,
polymer

I CO2 sequestration

I Automatic differentiation
enables rapid development of
fluid models.

Ambition: to be a strong base for both industrial development and
academic research
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Physical laws and behaviours

I Conservation of mass
I for each fluid pseudocomponent (oil, gas, water)
I for injected EOR fluids (polymer, CO2, surfactants)
I (for ion species)
I ∂

∂t
(φAα) +∇ · uα = Qα

I Darcy’s law (single phase)
I v = −(1/µ)K(∇p− ρg)

I Multiphase flow: relative permeability and capillary pressure
I flow rate reduced by kr, function of fluid saturations
I pressure difference between phases
I vα = −(kr,α/µα)K(∇pα − ραg)
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The black-oil model

I “Black-oil” model assumptions
I Lump HC species into two (pseudo)components (oil, gas)
I Allow oleic phase to contain both oil and gas components

I Dissolved gas ratio, rS
I Allow gaseous phase to contain both oil and gas components

I Vaporized oil ratio, rV

I Assumed always at thermodynamic equilibrium
I Simple enough PVT relations to use table lookup

I Consequence: phase and component confusion!

I Consequence: can have three different states:
I fully saturated (all three phases present)
I undersaturated oil (no gaseous phase)
I undersaturated gas (no oleic phase)

I (Subset of more general compositional model,
must solve equation of state, such as Peng-Robinson)
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System of equations

The continuous equations form a system of partial differential equations,
one for each pseudo-component α:

∂

∂t
(φAα) +∇ · uα = Qα (1)

where

Aw = mφbwsw, uw = bwvw, (2)

Ao = mφ(boso + rV bgsg), uo = bovo + rV bgvg, (3)

Ag = mφ(bgsg + rSboso), ug = bgvg + rSbovo. (4)

and these additional relations should hold:

sw + so + sg = 1 (5)

pcow = po − pw (6)

pcog = po − pg. (7)

The phase fluxes are given by Darcy’s law:

vα = −λαK(∇pα − ραg). (8)
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Coupling to well model

What is the source term, anyway?

∂

∂t
(φAα) +∇ · uα = Qα

Well rates!

I Computed using separate well model(s).

I Must be solved simultaneously with reservoir equations.
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Discretization

The system is discretized using:

I First-order implicit Euler in time

I First-order finite volumes in space
I two-point flux approximation (!)
I phase-based upwinding of properties

Why such “primitive methods” (low order, inconsistent)?

I Historically, finite difference methods

I Need systems that linear solvers can deal with well

I Sufficient for practical purposes

I Discretization errors not significant compared to inherent uncertainty

Quite a bit has been done by various groups (not mainstream yet):

I Consistent discretizations (MPFA, mimetic)

I Higher-order FV or DG methods

I Higher-order time discretizations
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Discrete equations (I)

The discretized equations and residuals are, for each pseudo-component
α and cell i:

Rα,i =
φ0,iVi

∆t

(
Aα,i −A0

α,i

)
+
∑
j∈C(i)

uα,ij +Qα,i = 0 (9)

where

Aw = mφbwsw, uw = bwvw, (10)

Ao = mφ(boso + rogbgsg), uo = bovo + rogbgvg, (11)

Ag = mφ(bgsg + rgoboso), ug = bgvg + rgobovo. (12)

The relations (5), (6) and (7) hold for each cell i.
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Discrete equations (II)

The fluxes are given for each connection ij by:

(bαvα)ij = (bαλαmT )U(α,ij)Tij∆Hα,ij (13)

(rβαbαvα)ij = (rβαbαλαmT )U(α,ij)Tij∆Hα,ij (14)

∆Hα,ij = pα,i − pα,j − gρα,ij(zi − zj) (15)

ρα,ij = (ρα,i + ρα,j)/2 (16)

U(α, ij) =

{
i ∆Hα,ij ≥ 0

j ∆Hα,ij < 0
(17)
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Solving the discrete equations

Main method: Newton-Raphson

I solve large heterogenous linear systems

I challenging to precondition (CPR + AMG best?)

I must modify updates for phase changes

I must handle convergence failures (timestep cuts)
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What does AD provide

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation (AD)

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated
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Benefits of using AD

AD makes it easier to create simulators:

I only specify nonlinear residual equation

I automatically evaluates Jacobian

I sparsity structure of Jacobian automatically generated

Note that AD is not the same as finite differencing!

I no need to define a ’small’ epsilon

I as precise as hand-made Jacobian

I ... but much less work!

Performance (of equation assembly) will usually be somewhat slower than
a good hand-made Jacobian implementation.
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Basic idea

A numeric computation y = f(x) can be written (D = derivative)

y1 = f1(x)
dy1
dx

(x) = Df1(x)

y2 = f2(y1)
dy2
dx

(x) = Df2(y1) ·Df1(x)

...

y = fn(yn−1)
dy

dx
(x) = Dfn(yn−1) ·Dfn−1(yn−2) · · ·Df1(x)

Automatic Differentiation:

I make each line an elementary operation

I compute right derivative values as we go using chain rule
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Implementation approaches

Two main methods:

Operator overloading

I requires operator overloading in programming language

I syntax (more or less) like before (non-AD)

I efficiency can vary a lot, depends on usage scenario

I easy to implement and experiment with

I Examples: OPM, Sacado (Trilinos), ADOL-C

Source transformation with AD tool

I can be implemented for almost any language

I may restrict language syntax or features used

I efficiency can be high (depends on AD tool)

I Examples: TAPENADE, OpenAD
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Types of AD

Two different approaches.
(We compute f(x), u is some intermediate variable.)

Forward Mode
Carry derivatives with respect to independent variables:

(u,
du

dx
)

Reverse Mode
Carry derivatives with respect to dependent variables (adjoints):

(u,
df

du
)
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Forward AD example (1)

Example function: f(x) = x(sin(x2) + 3x).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

Rewritten:
f(x) = f5(x, f4(f2(f1(x)), f3(x)))

f5

x f4

f2

f1

x

f3

x
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Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

x f4

f2

f1

x

f3

x

f ′5

x′ f ′4

f ′2

f ′1

x′

f ′3

x′
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3
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3

f ′5

1 f ′4

f ′2

f ′1

1

f ′3

1
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1
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Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
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28.2364

3 9.4121

0.4121

9

3

9

3

2.0118

1 -2.4668

-5.4668

6

1

3

1
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Properties of forward AD

I Easy to implement with operator overloading

I Storage required (scalar): 2× normal (value, derivative).

I Storage required (f : Rm → Rn): (n+ 1)× normal (value,
derivative vector), unless sparse.
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Reverse Mode AD

Recall: Reverse Mode
Carry derivatives with respect to dependent variables (adjoints):

(u,
df

du
)

We will use the chain rule again, but in the opposite direction:

adj(u) = adj(fi)
∂fi
∂u

.

Using adj(u) to mean the adjoint df
du .

(So adj(x) is our goal.)
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Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

adj(f5)

adj(x) adj(f4)

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) adj(f4)

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

3

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

3

-2.7334

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

3

-2.7334

adj(x)

3

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

9.4121 3

3

-2.7334

-16.4003

3

9

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

9.4121 3

3

-2.7334

-16.4003

3

9

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.
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Automatic Differentiation: OPM implementations

AutoDiffBlock (legacy)

I class implementing forward AD

I deals with vectors of values at a time

I derivatives are sparse matrices

I implemented with operator overloading

I based on Eigen library for basic types and operands

I helper library provides discrete div, grad etc.

Evaluation (new effort)

I class implementing forward AD

I deals with a single scalar value at a time

I derivatives are compile-time-size vectors

I implemented with operator overloading

I discrete div, grad must be implemented “manually”
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Overview of talk

Reservoir simulation

Mathematical formulation

Implementation with automatic differentiation

What next?
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We keep pursuing...

I Performance
I Improving preconditioners and linear solvers
I New discretizations, nonlinear preconditioning
I Parallel scaling

I Usability
I Reference manual started!
I More output/logging options
I Better error messages

I Deployability
I Container usage
I MSO4SC Portal and web integration
I Better error messages
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Further ahead: some possibilities

I New fluid models for CO2, EOR options.

I Scriptable? Python? Cling-able?

I More flexible boundary conditions

I Higher order DG methods?

I Consistent discretizations?

I Fully compositional fluid model?

I New I/O system for parallel scalability?

I Preprocessing tools?
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Thank you for listening!
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