
OPM Flow – overview and demonstration

Atgeirr Flø Rasmussen

SINTEF Digital, Mathematics and Cybernetics

MSO4SC workshop
23rd May 2017

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Overview of talk

Reservoir simulation

Mathematical formulation

Implementation with automatic differentiation

What next?

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Overview of talk

Reservoir simulation

Mathematical formulation

Implementation with automatic differentiation

What next?

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



What is reservoir simulation

Simulation of porous medium flow in subsurface reservoirs.

Examples of use:

I Energy industry
I Forecasting and optimizing oil and gas production.
I Forecasting and optimizing geothermal energy production.

I Environmental management
I Groundwater flows and pollutants
I CO2storage

Reservoir simulators solve systems of nonlinear PDEs
that are coupled to well/facility models.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why is it hard?

I Porous medium is strongly
heterogeneous and
anisotropic.

I Grids with high aspect
ratio, fully unstructured,
polygonal cells.

I Nontrivial phase
behaviour. Phases can
appear and disappear as
fluid components dissolve
or vaporize.

I Coupling to wells can
connect regions that are
far away from each other.

I The models are highly
nonlinear.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Why does it require HPC/Cloud

I Model sizes increasing (Saudi-Aramco record: 1e12 cells)

I Model complexity increasing (well/facility models, fluid models)

I New mechanisms (polymer, CO2) require better resolved fronts

I Large ensembles for history matching, optimization, uncertainty
quantification

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



The market situation

Commercial reservoir simulators (expensive but comprehensive):

I ECLIPSE, Intersect (Schlumberger)

I IMEX, GEM, STARS (CMG)

I Nexus (Landmark)

I tNavigator (Rock Flow Dynamics)

I ...

In-house simulators (unavailable to outsiders):

I (Tera)POWERS (Saudi-Aramco)

I MoReS (Shell)

I GPRS (Stanford University)

I ...

Open source simulators:

I OPM Flow

I MRST (Sintef)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



OPM Flow at a glance

I Open source

I Handling cases of full industrial
complexity (wells, properties)

I Competitive performance

I Currently used to study (for
example):

I Oil production: history
matching and prediction of
field performance

I Enhanced oil recovery: CO2,
polymer

I CO2 sequestration

I Automatic differentiation
enables rapid development of
fluid models.

Ambition: to be a strong base for both industrial development and
academic research

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Overview of talk

Reservoir simulation

Mathematical formulation

Implementation with automatic differentiation

What next?

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Physical laws and behaviours

I Conservation of mass
I for each fluid pseudocomponent (oil, gas, water)
I for injected EOR fluids (polymer, CO2, surfactants)
I (for ion species)
I ∂

∂t
(φAα) +∇ · uα = Qα

I Darcy’s law (single phase)
I v = −(1/µ)K(∇p− ρg)

I Multiphase flow: relative permeability and capillary pressure
I flow rate reduced by kr, function of fluid saturations
I pressure difference between phases
I vα = −(kr,α/µα)K(∇pα − ραg)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Physical laws and behaviours

I Conservation of mass
I for each fluid pseudocomponent (oil, gas, water)
I for injected EOR fluids (polymer, CO2, surfactants)
I (for ion species)
I ∂

∂t
(φAα) +∇ · uα = Qα

I Darcy’s law (single phase)
I v = −(1/µ)K(∇p− ρg)

I Multiphase flow: relative permeability and capillary pressure
I flow rate reduced by kr, function of fluid saturations
I pressure difference between phases
I vα = −(kr,α/µα)K(∇pα − ραg)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Physical laws and behaviours

I Conservation of mass
I for each fluid pseudocomponent (oil, gas, water)
I for injected EOR fluids (polymer, CO2, surfactants)
I (for ion species)
I ∂

∂t
(φAα) +∇ · uα = Qα

I Darcy’s law (single phase)
I v = −(1/µ)K(∇p− ρg)

I Multiphase flow: relative permeability and capillary pressure
I flow rate reduced by kr, function of fluid saturations
I pressure difference between phases
I vα = −(kr,α/µα)K(∇pα − ραg)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



The black-oil model

I “Black-oil” model assumptions
I Lump HC species into two (pseudo)components (oil, gas)
I Allow oleic phase to contain both oil and gas components

I Dissolved gas ratio, rS
I Allow gaseous phase to contain both oil and gas components

I Vaporized oil ratio, rV

I Assumed always at thermodynamic equilibrium
I Simple enough PVT relations to use table lookup

I Consequence: phase and component confusion!

I Consequence: can have three different states:
I fully saturated (all three phases present)
I undersaturated oil (no gaseous phase)
I undersaturated gas (no oleic phase)

I (Subset of more general compositional model,
must solve equation of state, such as Peng-Robinson)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



The black-oil model

I “Black-oil” model assumptions
I Lump HC species into two (pseudo)components (oil, gas)
I Allow oleic phase to contain both oil and gas components

I Dissolved gas ratio, rS
I Allow gaseous phase to contain both oil and gas components

I Vaporized oil ratio, rV

I Assumed always at thermodynamic equilibrium
I Simple enough PVT relations to use table lookup

I Consequence: phase and component confusion!

I Consequence: can have three different states:
I fully saturated (all three phases present)
I undersaturated oil (no gaseous phase)
I undersaturated gas (no oleic phase)

I (Subset of more general compositional model,
must solve equation of state, such as Peng-Robinson)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



The black-oil model

I “Black-oil” model assumptions
I Lump HC species into two (pseudo)components (oil, gas)
I Allow oleic phase to contain both oil and gas components

I Dissolved gas ratio, rS
I Allow gaseous phase to contain both oil and gas components

I Vaporized oil ratio, rV

I Assumed always at thermodynamic equilibrium
I Simple enough PVT relations to use table lookup

I Consequence: phase and component confusion!

I Consequence: can have three different states:
I fully saturated (all three phases present)
I undersaturated oil (no gaseous phase)
I undersaturated gas (no oleic phase)

I (Subset of more general compositional model,
must solve equation of state, such as Peng-Robinson)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



The black-oil model

I “Black-oil” model assumptions
I Lump HC species into two (pseudo)components (oil, gas)
I Allow oleic phase to contain both oil and gas components

I Dissolved gas ratio, rS
I Allow gaseous phase to contain both oil and gas components

I Vaporized oil ratio, rV

I Assumed always at thermodynamic equilibrium
I Simple enough PVT relations to use table lookup

I Consequence: phase and component confusion!

I Consequence: can have three different states:
I fully saturated (all three phases present)
I undersaturated oil (no gaseous phase)
I undersaturated gas (no oleic phase)

I (Subset of more general compositional model,
must solve equation of state, such as Peng-Robinson)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



System of equations

The continuous equations form a system of partial differential equations,
one for each pseudo-component α:

∂

∂t
(φAα) +∇ · uα = Qα (1)

where

Aw = mφbwsw, uw = bwvw, (2)

Ao = mφ(boso + rV bgsg), uo = bovo + rV bgvg, (3)

Ag = mφ(bgsg + rSboso), ug = bgvg + rSbovo. (4)

and these additional relations should hold:

sw + so + sg = 1 (5)

pcow = po − pw (6)

pcog = po − pg. (7)

The phase fluxes are given by Darcy’s law:

vα = −λαK(∇pα − ραg). (8)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Coupling to well model

What is the source term, anyway?

∂

∂t
(φAα) +∇ · uα = Qα

Well rates!

I Computed using separate well model(s).

I Must be solved simultaneously with reservoir equations.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Coupling to well model

What is the source term, anyway?

∂

∂t
(φAα) +∇ · uα = Qα

Well rates!

I Computed using separate well model(s).

I Must be solved simultaneously with reservoir equations.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Discretization

The system is discretized using:

I First-order implicit Euler in time

I First-order finite volumes in space
I two-point flux approximation (!)
I phase-based upwinding of properties

Why such “primitive methods” (low order, inconsistent)?

I Historically, finite difference methods

I Need systems that linear solvers can deal with well

I Sufficient for practical purposes

I Discretization errors not significant compared to inherent uncertainty

Quite a bit has been done by various groups (not mainstream yet):

I Consistent discretizations (MPFA, mimetic)

I Higher-order FV or DG methods

I Higher-order time discretizations

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Discrete equations (I)

The discretized equations and residuals are, for each pseudo-component
α and cell i:

Rα,i =
φ0,iVi

∆t

(
Aα,i −A0

α,i

)
+
∑
j∈C(i)

uα,ij +Qα,i = 0 (9)

where

Aw = mφbwsw, uw = bwvw, (10)

Ao = mφ(boso + rogbgsg), uo = bovo + rogbgvg, (11)

Ag = mφ(bgsg + rgoboso), ug = bgvg + rgobovo. (12)

The relations (5), (6) and (7) hold for each cell i.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Discrete equations (II)

The fluxes are given for each connection ij by:

(bαvα)ij = (bαλαmT )U(α,ij)Tij∆Hα,ij (13)

(rβαbαvα)ij = (rβαbαλαmT )U(α,ij)Tij∆Hα,ij (14)

∆Hα,ij = pα,i − pα,j − gρα,ij(zi − zj) (15)

ρα,ij = (ρα,i + ρα,j)/2 (16)

U(α, ij) =

{
i ∆Hα,ij ≥ 0

j ∆Hα,ij < 0
(17)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Solving the discrete equations

Main method: Newton-Raphson

I solve large heterogenous linear systems

I challenging to precondition (CPR + AMG best?)

I must modify updates for phase changes

I must handle convergence failures (timestep cuts)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Overview of talk

Reservoir simulation

Mathematical formulation

Implementation with automatic differentiation

What next?

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



What does AD provide

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation (AD)

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



What does AD provide

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation (AD)

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



What does AD provide

f(x) { ... } df(x) { ... }

f(x) f ′(x)

Traditional Process

I Human implements code to evaluate f(x)

I Manual or symbolic calculation to derive f ′(x)

I Human implements code to evaluate f ′(x)

Automatic Differentiation (AD)

I Human implements code to evaluate f(x)

I Computer code to evaluate f ′(x) is automatically generated

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Benefits of using AD

AD makes it easier to create simulators:

I only specify nonlinear residual equation

I automatically evaluates Jacobian

I sparsity structure of Jacobian automatically generated

Note that AD is not the same as finite differencing!

I no need to define a ’small’ epsilon

I as precise as hand-made Jacobian

I ... but much less work!

Performance (of equation assembly) will usually be somewhat slower than
a good hand-made Jacobian implementation.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Basic idea

A numeric computation y = f(x) can be written (D = derivative)

y1 = f1(x)
dy1
dx

(x) = Df1(x)

y2 = f2(y1)
dy2
dx

(x) = Df2(y1) ·Df1(x)

...

y = fn(yn−1)
dy

dx
(x) = Dfn(yn−1) ·Dfn−1(yn−2) · · ·Df1(x)

Automatic Differentiation:

I make each line an elementary operation

I compute right derivative values as we go using chain rule

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Implementation approaches

Two main methods:

Operator overloading

I requires operator overloading in programming language

I syntax (more or less) like before (non-AD)

I efficiency can vary a lot, depends on usage scenario

I easy to implement and experiment with

I Examples: OPM, Sacado (Trilinos), ADOL-C

Source transformation with AD tool

I can be implemented for almost any language

I may restrict language syntax or features used

I efficiency can be high (depends on AD tool)

I Examples: TAPENADE, OpenAD

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Types of AD

Two different approaches.
(We compute f(x), u is some intermediate variable.)

Forward Mode
Carry derivatives with respect to independent variables:

(u,
du

dx
)

Reverse Mode
Carry derivatives with respect to dependent variables (adjoints):

(u,
df

du
)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (1)

Example function: f(x) = x(sin(x2) + 3x).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

Rewritten:
f(x) = f5(x, f4(f2(f1(x)), f3(x)))

f5

x f4

f2

f1

x

f3

x

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

x f4

f2

f1

x

f3

x

f ′5

x′ f ′4

f ′2

f ′1

x′

f ′3

x′

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

3 f4

f2

f1

3

f3

3

f ′5

1 f ′4

f ′2

f ′1

1

f ′3

1

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

3 f4

f2

9

3

f3

3

f ′5

1 f ′4

f ′2

6

1

f ′3

1

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

3 f4

0.4121

9

3

f3

3

f ′5

1 f ′4

-5.4668

6

1

f ′3

1

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

3 f4

0.4121

9

3

9

3

f ′5

1 f ′4

-5.4668

6

1

3

1

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

f5

3 9.4121

0.4121

9

3

9

3

f ′5

1 -2.4668

-5.4668

6

1

3

1

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Forward AD example (2)

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 f ′1(u) = 2uu′

f2(u) = sin(u) f ′2(u) = cos(u)u′

f3(u) = 3u f ′3(u) = 3u′

f4(u, v) = u+ v f ′4(u, v) = u′ + v′

f5(u, v) = u · v f ′5(u, v) = u′v + uv′

28.2364

3 9.4121

0.4121

9

3

9

3

2.0118

1 -2.4668

-5.4668

6

1

3

1

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Properties of forward AD

I Easy to implement with operator overloading

I Storage required (scalar): 2× normal (value, derivative).

I Storage required (f : Rm → Rn): (n+ 1)× normal (value,
derivative vector), unless sparse.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse Mode AD

Recall: Reverse Mode
Carry derivatives with respect to dependent variables (adjoints):

(u,
df

du
)

We will use the chain rule again, but in the opposite direction:

adj(u) = adj(fi)
∂fi
∂u

.

Using adj(u) to mean the adjoint df
du .

(So adj(x) is our goal.)

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

adj(f5)

adj(x) adj(f4)

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

adj(f5)

adj(x) adj(f4)

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) adj(f4)

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

adj(f2)

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

3

adj(f1)

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

3

-2.7334

adj(x)

adj(f3)

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

adj(x) 3

3

-2.7334

adj(x)

3

adj(x)

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

9.4121 3

3

-2.7334

-16.4003

3

9

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Reverse AD example

Example function: f(x) = x(sin(x2) + 3x). Computing f(3), f ′(3).
Sequence of elementary functions:

f1(u) = u2 adj(u) = adj(f1) · 2u
f2(u) = sin(u) adj(u) = adj(f2) · cos(u)

f3(u) = 3u adj(u) = adj(f3) · 3
f4(u, v) = u+ v adj(u) = adj(f4), adj(v) = adj(f4)

f5(u, v) = u · v adj(u) = adj(f5) · v, adj(v) = adj(f5) · u

28.2364

3 9.4121

0.4121

9

3

9

3

1

9.4121 3

3

-2.7334

-16.4003

3

9

Must sum
contributions:
f ′(3) = 9.4121−
16.4003+9 = 2.0118.

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Automatic Differentiation: OPM implementations

AutoDiffBlock (legacy)

I class implementing forward AD

I deals with vectors of values at a time

I derivatives are sparse matrices

I implemented with operator overloading

I based on Eigen library for basic types and operands

I helper library provides discrete div, grad etc.

Evaluation (new effort)

I class implementing forward AD

I deals with a single scalar value at a time

I derivatives are compile-time-size vectors

I implemented with operator overloading

I discrete div, grad must be implemented “manually”

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Overview of talk

Reservoir simulation

Mathematical formulation

Implementation with automatic differentiation

What next?

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



We keep pursuing...

I Performance
I Improving preconditioners and linear solvers
I New discretizations, nonlinear preconditioning
I Parallel scaling

I Usability
I Reference manual started!
I More output/logging options
I Better error messages

I Deployability
I Container usage
I MSO4SC Portal and web integration
I Better error messages

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Further ahead: some possibilities

I New fluid models for CO2, EOR options.

I Scriptable? Python? Cling-able?

I More flexible boundary conditions

I Higher order DG methods?

I Consistent discretizations?

I Fully compositional fluid model?

I New I/O system for parallel scalability?

I Preprocessing tools?

Mathematics and Cybernetics MSO4SC workshop 2016–05–23



Thank you for listening!

Mathematics and Cybernetics MSO4SC workshop 2016–05–23


	Reservoir simulation
	Mathematical formulation
	Implementation with automatic differentiation
	What next?

