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The MATLAB Reservoir Simulation Toolbox

Open-source toolbox for reservoir modelling,
developed by SINTEF Digital and used in most
of our research

Wide international user base:

academic institutions, oil and service
companies

USA, Norway, China, Brazil, United
Kingdom, Iran, Germany, Netherlands,
France, Canada, . . .

12 000+ unique downloads since 2013
http://www.sintef.no/MRST

Used in publications:

100+ master and PhD theses

140+ journal/proceedings papers by authors outside our group
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Toolbox for experimental programming

Flexible simulators, easy to extend with new functionality, scaling with
accuracy requirement and computational budget

seconds minutes hours

Diagnostics/proxies

Flow diagnostics/volumetrics

Physics-based proxies

Fast optimization

Spill-point analysis

Model reduction

Grid coarsening

Flow-based upscaling

Multiscale methods

Model-reduction techniques

Vertical-equilibrium models

Full simulation

Black-oil, EOR, thermal,
compositional, geomechanics

Grids and discretizations

Nonlinear/linear solvers

Rapid prototyping

Adjoint formulations and
(closed-loop) optimization
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Two different programming paradigms

incomp – sequential solvers for incompressible flow

Have been part of MRST since the start

Uses imperative programming: functions that operate mainly on
vectors, (sparse) matrices, structures, and a few cell arrays

Explicit assembly and linearization of flow equations

AD-OO – (fully) implicit solvers for compressible flow

More recent addition to MRST

Object-oriented framework for building simulators

Assembly and linearization performed implicitly by the use of
automatic differentiation

Both families rely on functionality from mrst-core
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Advanced simulators: motivation

First fully-implicit black-oil implementation: ad-fi (2013)

very successful in terms of research output

intended for black-oil with adjoints, but was used as general
simulator

However, ad-fi was a victim of own success:

mixing logic of Newton solver with definition of model equations

time-stepping and stabilization done per-model

lots of code duplication and impossible to maintain
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Next step: object-orientation

Introduce object-orientation to separate:

physical models

discretizations and discrete operators

nonlinear solver and time-stepping

assembly and solution of the linear system

Only expose needed details and enable more reuse of functionality that
has already been developed
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Next step: object-orientation

The object-oriented AD framework makes it easy to write general
simulator classes:

standardized interfaces make Newton solver independent of the
specifics of the physical model

normalized input/output makes it easy to compare and plot results

switching linear solvers or time-stepping strategy is straightforward

(Compare ad-blackoil and blackoil-sequential)

General sensitivities/gradients through adjoints

Typical workflow: build simple prototype → migrate to class-based solver
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General setup of simulator

Data

Class

Struct

Function

Input

Contains

Input deck

Input parser

Reads complete simulation decks:
grid and petrophysics, fluid and rock
properties, region information, well
definitions, operating schedule, con-
vergence control, etc

Reservoir model

Description of geology and fluid behavior as
well as discrete averaging and spatial dis-
cretization operators

PetrophysicsGrid Fluids

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

State

Physical variables inside
the reservoir

p, sw, so, sg, c, rv, rs

Well state

Physical variables inside
the wellbore

qsw, q
s
o, q

s
g, q

s
p, pbh

Schedule

Time steps and controls and
settings for wells and boundary
conditions

Wells
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The layout of the AD solvers

Primary vars

[Res, Jac], info

Assemble: Ax = b

δx

Update variables:
p← p + δp, s← s + δs, ...

Initial ministep:
∆t

Adjusted:
∆t̃

Write to storage

3D visualization

Well curves

State(Ti), ∆Ti, Controls(Ci)

State(Ti + ∆Ti)

Type color legend

Class

Struct

Function(s)

Input

Contains object

Optional output

Initial state Physical model
Schedule

Steps

Time step and control numbers
{(∆T1, C1), ..., (∆Tn, Cn)},

Controls

Different wells and bc
{(W1, BC1), ..., (Wm, BCm)}

Simulator

Solves simulation schedule comprised
of time steps and drive mechanisms
(wells/bc)

simulateScheduleAD

Nonlinear solver

Solves nonlinear problems sub-divided
into one or more mini steps using
Newton’s method

Time step selector

Determines optimal time steps

SimpleTimeStepSelector,

IterationCountSelector,

StateChangeTimeStepSelector, ...

Result handler

Stores and retrieves simulation data
from memory/disk in a transparent
and efficient manner.

Visualization

Visualize well curves, reservoir proper-
ties, etc

plotCellData, plotToolbar,

plotWellSols, ...

State

Primary variables: p, sw, sg, Rs, Rv...

Well solutions

Well data: qW, qO, qG, bhp, ...

Physical model

Defines mathematical model: Resid-
ual equations, Jacobians, limits on
updates, convergence definition...

TwoPhaseOilWaterModel,

ThreePhaseBlackOilModel

Well model

Well equations, control switch, well-
bore pressure drop, ...

Linearized problem

Jacobians, residual equations and
meta-information about their types

Linear solver

Solves linearized problem and returns
increments

BackslashSolverAD, AGMGSolverAD,

CPRSolverAD, MultiscaleSolverAD, ...

The framework is designed so that you can only work on the components you
are interested in: If you want to write a flow solver, you do not need to debug a
Newton solver.
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

PhysicalModel

Properties:

operators, G
nonlinearTolerance, stepFunctionIsLinear
verbose

Quality assurance:

state = model.validateState(state)
model = model.validateModel(...)

Querying / setting model properties:

p = model.getProp(state, 'pressure')
[p,s] = model.getProps(state, 'pressure', ' s ')
[f,i] = model.getVariableField(name)
state = model.setProp(model, state, 'pressure', 5)
state = model.incrementProp(state, 'pressure', 1)
state = model.capProperty(state,'saturation', 0, 1)

These are examples of syntax for derived classes and
will not work on a PhysicalModel, which has no
associated variables
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel
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Get drive mechanisms:

[..,ctrl] = model.getDrivingForces(model, ctrl)
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PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

PhysicalModel

Get drive mechanisms:

[..,ctrl] = model.getDrivingForces(model, ctrl)

Linearize and assemble discrete problem:

[problem, state] = ...
model.getEquations(state0, state, ...

dt, drivingForces, varargin)

Compute a linearized time step:

[state, report] = ...
model.stepFunction(model, state, state0, ..

dt, drivingForces, linsolve, ...
nonlinsolve, iteration, varargin)
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

PhysicalModel

Update state from Newton increment:

[state, report] = model.updateState(state, ...
problem, dx, drivingForces)

and other utility functions:

[conv, ..] = model.checkConvergence(problem, n)

[state,rep] = model.updateAferConvergence(...
state0, state, dt, drivingForces)

:
:
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

ReservoirModel

Properties:

% Submodels
fluid, rock, gravity

FacilityModel

% Physical properties
water, gas, oil

saturationVarNames, componentVarNames

% Iterations parameters
dpMaxRel, dpMaxAbs, dsMaxRel, dsMaxAbs
maximumPressure, minimumPressure
useCNVConvergence, toleranceCNV
toleranceMB

% Miscellaneous
:
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

ReservoirModel

Declaration of physical variables:

function [fn,ix] = getVariableField(model, name)
switch(lower(name))

case {' pressure ' , 'p'}
ix = 1;
fn = 'pressure ' ;

case {'s ' , ' sat ' , ' saturation '}
ix = ': ' ;
fn = 's ' ;

case {'sw' , 'water'}
ix = model.satVarIndex('sw');
fn = 's ' ;

:
end

Plus a large number of utility functions to extract,
update, and store these physical variables
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

ReservoirModel

The class declares known drive mechanisms:

function forces = getValidDrivingForces(model)
forces = getValidDrivingForces

@PhysicalModel(model);
forces.W = [];
forces.bc = [];
forces.src = [];

end

and define how to evaluate relative permeability,
get surface densities, etc.

The class also specifies how to add well equations,
source terms, and boundary conditions to the
equation system, but does not implement specific
flow equations.

9 / 31



Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

ReservoirModel

Default discretization is a two-point method:

function model = ...
setupOperators(model,G, rock, varargin)

model.operators = ...
setupOperatorsTPFA(G, rock, varargin{:});

end
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Functionality through inheritance

PhysicalModel

Abstract base class for all MRST models.
Contains logic related to linearization and
updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and temperature.
Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional so-
lution gas and vaporized oil. Base class for
two- and single-phase versions.

Added primary variables: rs, rv

ThreePhaseBlackOilModel

Implementes specific equations, which in this case
is a general black-oil model with dissolved gas and
vaporized oil.

Evaluation of residual equations:

[problem, state] = ...
equationsBlackOil(state0, state,...

model, dt, drivingForces, varargin)

Details of this function is as given for two-phase
case above, but with more features and logic that
switches unknowns depending on phases present
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Motivation: Sequential implicit schemes

Separate elliptic/parabolic pressure from hyperbolic transport

Specialized nonlinear solvers: Multiscale methods for pressure, higher-order
transport, reordering methods, trust region solvers, ...

Efficient: Smaller linearized systems with reduced coupling

Consensus on scheme for immiscible, weakly compressible

How to treat compositional models in a sequential framework?
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Motivation: Sequential implicit schemes

How to treat compositional models? What do we want?

No time-step restrictions in transport due to e.g. small cells

Robustness for different flow regimes – avoid oscillations, unphysical values

Exact mass conservation without outer loop

Agreement with fully-implicit discretization

Symmetric: No preferential treatment for specific components!

This work: Fixed-volume formulation. Joint work with Hamdi Tchelepi
Previous works: Acs et al (1985), Watts (1986), Trangenstein & Bell (1989), Coats (1995), Hauk̊as et al (2006), Hajibeygi & Tchelepi

(2014), Møyner & Tchelepi(2017), Moncorgé et al (2017)
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Governing equations for isothermal flow

Conservation of each component i ∈ {1, ..., N},

∂

∂t
(φ [ρLSLXi + ρV SV Yi]) +∇ · (ρLXi~vL + ρV Yi~vV ) = qi,

with natural variables: p, SL, SV , x1, ..., xN , y1, , ..., yN .

Fugacity balance for cells with both liquid and vapor

fLi (p, T, x1, ..., xN ) = fVi (p, T, y1, ..., yN ).

Sum of fractions close the system,

N∑
i=1

xi = 1,

N∑
i=1

yi = 1, SV + SL = 1.

Fluxes are given by multiphase Darcy’s law:

~vα = −Kλα(∇pα − ραg∆z)
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fLi (p, T, x1, ..., xN ) = fVi (p, T, y1, ..., yN ).

Sum of fractions close the system,

N∑
i=1

xi = 1,

N∑
i=1

yi = 1, SV + SL = 1.

Fluxes are given by multiphase Darcy’s law:

~vα = −Kλα(∇pα − ραg∆z)

Note: ρα, Sα, Xi, Yi, λα, ... depend strongly on both
hyperbolic overall mole fractions zi and parabolic

pressure p, regardless of choice of primary variables.
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Governing equations for isothermal flow

Compositional model in the Matlab Reservoir Simulation Toolbox
(MRST) has typical choices for compositional simulation of hydrocarbons,

Densities and phase behavior predicted by equation-of-state

Generalized cubic equation-of-state: Martin’s equation

Lohrenz-Bray-Clark viscosity correlations

Schur-complement used to obtain N by N system for variable set α,

−J∆x =

[
B C
D E

] [
α
β

]
=

[
f
h

]
→ Aα = (B−CE−1D)α = f−CE−1h = b.

Remark: E is easily invertible, as fugacity is local to each cell

Support for both natural-variables and overall composition

14 / 31



Example 3: Multiscale SPE10

Permeability [mD] Pressure [bar]

Inject approximately 1 pore-volume CO2 over 2000 days

Layer taken from Tarbert formation, SPE 10, model 2

Multiscale solver with MsRSB basis functions and 10−3 tolerance

6 pseudocomponent fluid from Mallison et al
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Example 3: Multiscale SPE10
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Example: Multiscale SPE10
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Example: Multiscale Norne

Vertical permeability [mD] Pressure [bar]

Nitrogen injection over 2500 days, 4 components

Faulted, anisotropic model

Significant gravity effect with wells perforated in five layers

Multiscale solver with MsRSB basis functions and 10−3 tolerance

Maximum CFL: 160
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Example: Multiscale Norne
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Introduction

Simulation of CO2 storage requires vast temporal and spatial scales

Vertical-equilibrium (VE) models: Accurate and efficient in this regime

Assumption of vertical segregation is not always valid

Near-well regions, layered flow compartments, coupling to facilities, ...

Idea: Combine multiple discretization regions in a robust, unified model
Joint work with Halvor Møll Nilsen
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Introduction

Fully-implicit, finite-volume discretization

Fully automated coarsening for e.g. corner-point grids

Regions are automatically detected and discretized

Challenge: Consistent coupling between different regions

Transition between VE-zones, diffuse leakage, fine-scale are all included

VE to VE Fine-scale to VE
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Example: Sleipner (injection)

Fine-scale (40,460 cells)

VE (700 cells)

Hybrid (2700 cells)
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Example: Sleipner (migration)

Fine-scale (40,460 cells)

VE (700 cells)

Hybrid (2700 cells)
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Example: Full Utsira model
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Utsira model provided by the Norwegian Petroleum Directorate
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Example: Utsira, (migration)

Fine-scale (111,162 cells)

Hybrid (44,215 cells)
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Example: Utsira (migration)

Fine-scale (111,162 cells)

Hybrid (44,215 cells)
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Combining models

Compositional VE-hybrid model in five lines of code!
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Overview: core and add-on modules
MRST core upr coarsegrid agglom libgeometry opm gridprocessing

Grid generation
and coarsening

incomp mimetic mpfa ntpfa vem adjoint

Discretization
and solvers for

incompressible flow

ad-core ad-blackoil ad-eor blackoil-sequential deckreader ad-props

Discretization
and solvers for

compressible flow

msrsb msmfem msfvm hfm upscaling steady-state

Upscaling and
multiscale methods

dfm hfm dual-porosity ad-mechanics vemmech fvbiot

Fractured media
and geomechanics

co2lab diagnostics mrst-gui enkf optimization remso

Workflow tools
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