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OPM Flow at a glance

I Open source

I Competitive performance

I Full industrial complexity
I Well controls
I EOR: CO2, polymer
I CO2 sequestration

I Automatic differentiation (AD)

Ambition: to be a strong base for both industrial development and
academic research
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Main idea of this talk

We can gain performance by

I sequential splitting,

I reordering solvers,

I (nonlinear preconditioners)

... without losing the ability to run
industrial full field models.
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Figure 45: WBHP of well C-3H.
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Figure 46: WOPR of well C-3H.
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The black-oil model, physical laws

“Black-oil” model assumptions

Lump hydrocarbon species into two pseudo-components (oil, gas)

Fluid Pseudo-component
Phase Water Oil Gas

Aqueous x
Oleic x x

Gaseous x x

(Subset of more general compositional model)

Conservation of mass (per component α)

∂

∂t
(φAα) +∇ · uα = Qα

Darcy’s law (per phase β)

vβ = −(kr,β/µβ)K(∇pβ − ρβg)
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System of equations (fully implicit)

System of PDEs, one for each pseudo-component α:

∂

∂t
(φAα) +∇ · uα = Qα

where

Aw = bwsw, uw = bwvw,

Ao = boso + rV bgsg, uo = bovo + rV bgvg,

Ag = bgsg + rSboso, ug = bgvg + rSbovo,

and also:

sw + so + sg = 1

po − pw = pcow

po − pg = pcog.

and Darcy:
vβ = −(kr,β/µβ)K(∇pβ − ρβg)
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Coupling to well model

What is the source term, anyway?

∂

∂t
(φAα) +∇ · uα = Qα

Well rates!

I Computed using separate well model(s).

I Must be solved simultaneously with reservoir equations.
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Fully implicit discretization (I)

Cell i

Notation:
Cell value: xi or xj
Connection value: xij

Discrete material balance

Rα,i =
φiVi
∆t

(
Aα,i −A0

α,i

)
+
∑
j∈C(i)

uα,ij −Qα,i = 0
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Fully implicit discretization (I)

Cell i Cell j

Flux vij Notation:
Cell value: xi or xj
Connection value: xij

Discrete material balance

Rα,i =
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Fully implicit discretization (I)
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Fully implicit discretization (I)

Cell i Cell j

Flux vij
Cells C(i)

Notation:
Cell value: xi or xj
Connection value: xij

Discrete material balance
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Fully implicit discretization (II)

The discretized equations are, for each pseudo-component α and cell i:

Rα,i =
φiVi
∆t

(
Aα,i −A0

α,i

)
+
∑
j∈C(i)

uα,ij −Qα,i = 0

where

Aw = bwsw, uw = bwvw,

Ao = boso + rV bgsg, uo = bovo + rV bgvg,

Ag = bgsg + rSboso, ug = bgvg + rSbovo.

Also:

sw + so + sg = 1 pcow = po − pw pcog = po − pg.
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Fully implicit discretization (III)

The phase fluxes are computed for each connection ij as follows:

ρα,ij = (ρα,i + ρα,j)/2

∆Hα,ij = pα,i − pα,j − gρα,ij(zi − zj)

UP (α, ij) =

{
i ∆Hα,ij ≥ 0

j ∆Hα,ij < 0

(bαvα)ij = (bαλα)UP (α,ij)Tij∆Hα,ij

(rSbovo)ij = (rSboλo)UP (o,ij)Tij∆Ho,ij

(rV bgvg)ij = (rV bgλg)UP (g,ij)Tij∆Hg,ij

(Darcy discretized with TPFA using phase-based upwinding)
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Solving the fully implicit discrete equations

Main method: Newton-Raphson

I solve large heterogenous linear systems

I challenging to precondition (CPR + AMG best?)

I must modify updates for phase changes

I must handle convergence failures (timestep cuts)
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Sequential splitting

Splitting pressure and transport:

I lets us solve two smaller problems rather than one large

I allows specialized methods to be used
I Pressure: multiscale methods
I Transport: reordering methods, streamline methods

I gives rise to splitting error
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Important questions

I Can splitting methods be applied to real field cases?
I Yes!

I Will they yield improved performance for such cases?
I Yes, probably.

I Acceptable robustness compared to fully implicit methods?
I Yes, probably.
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Recall...

Discrete material balance

Rα,i =
φiVi
∆t

(
Aα,i −A0

α,i

)
+
∑
j∈C(i)

uα,ij −Qα,i = 0
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Sequential implicit discretization

Pressure equation: linear combination to eliminate saturation dep.

Rp =
∑
α

σαRα = 0,

σw = 1/bw, σo =
1/bo − rS/bg
1− rSrV

, σg =
1/bg − rV /bo
1− rSrV

.

Store vT,ij =
∑
α vα,ij for transport solver.

Transport equations

Ro = 0, Rg = 0,

with fluxes derived from vT :

(bαvα)ij = bα,ij
λα,ij∑
β λβ,ij

(vT + TijGij).

Upwind bij , λij and gravity term Gij following Brenier and Jaffré
“Upstream Differencing for Multiphase Flow in Reservoir Simulation”
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The reordering idea

Advection-dominated transport problems:

I Upwind discretization

I Information flows in direction of fluid flow

I Solution in upstream cells does not depend on solution in
downstream cells
(... unless we have loops or countercurrent flow)
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Discretization setting (transport)

Fluxes vg,ij , j ∈ C(i).
Cells U(i, g).
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Discretization setting (transport)

Fluxes vo,ij , j ∈ C(i).
Cells U(i, o).
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Reordering the transport equations

Rewrite transport equation (for cell i, phase α):

Fi(xi) +
∑
j∈C(i)

Gi(xi, xj)vij(xi, xj , vT,ij) = 0

vij : signed flux from cell i to cell j
xi: unknowns in cell i

With upstream weighting we can write:

Fi(xi) +
∑
j∈U(i)

GUi (xj)vij(xj , vT,ij) +
∑
j∈D(i)

GDi (xi)vij(xi, vT,ij) = 0

Given xj , j ∈ U(i), we can solve for xi separately!

Countercurrent flow =⇒ can only do this per phase
(but we will relax this later)

For 1D case: can solve sequentially from injector to producer!
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Newton-Raphson vs. Nonlinear Gauss-Seidel

Newton-Raphson

r = F (x)
while ||r|| > tolerance do

Compute Jacobian matrix J = dF/dx
Solve Je = r
Update x = x− e
r = F (x)

Gauss-Seidel

r = F (x) while any ||ri|| > tolerance do
for all cells i do

Solve single-cell problem i
Update xi

r = F (x)

Perfect ordering: can drop outer loop!
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General case: computing an ordering

What quantity to use?

Single-phase flow with no gravity: sort according to pressure.

General case:

I Phase pressure? Which phase?

I Phase fluxes? Which phase?

I Total flux? What about countercurrent flow?

Our answer is: use total flux
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Small example

After topological sorting (Tarjan’s algorithm): unidirectional graph
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Slightly bigger example

Natural ordering:Natural order Sparsity pattern Topologically sorted Sparsity pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 148

1 2 6 11 18 33 35 36

3 4 5 10 17 32 34 37 38

7 8 9 16 31 39 40 41

12 13 14 15 30 45 46 47 48

19 20 21 29 44 51 52 53

22 23 26 28 43 50 55 56 57

24 25 27 42 49 54 58 59

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1480 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 148

After reordering (Tarjan):Natural order Sparsity pattern Topologically sorted Sparsity pattern

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 148

1 2 6 11 18 33 35 36

3 4 5 10 17 32 34 37 38

7 8 9 16 31 39 40 41

12 13 14 15 30 45 46 47 48

19 20 21 29 44 51 52 53

22 23 26 28 43 50 55 56 57

24 25 27 42 49 54 58 59

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1480 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 148

22 / 36



Ordering challenges

I Circular flow (gravity)

I Countercurrent flow (gravity, capillary pressure)

With stronger coupling, more mutually dependent cells: 050100
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Solution: Gauss-Seidel iterations

Gauss-Seidel

r = F (x) while any ||ri|| > tolerance do
for all cells i do

Solve single-cell problem i
Update xi

r = F (x)

Apply outer loop, but only for strongly connected cells.

Convergence proofs:
2-phase + polymer yes
3-phase black-oil no (but promising numerical results)
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Norne field case

Norne real field case, initial saturation values
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Norne field case: well D-3AH

 0

 50

 100

 150

 200

 250

 300

 0  500  1000  1500  2000  2500  3000  3500

W
BH

P

days

fully-implicit
reordering

Figure 69: WBHP of well D-3AH.
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Figure 70: WOPR of well D-3AH.

35

Bottom-hole pressure

 0

 50

 100

 150

 200

 250

 300

 0  500  1000  1500  2000  2500  3000  3500

W
BH

P

days

fully-implicit
reordering

Figure 69: WBHP of well D-3AH.
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Figure 70: WOPR of well D-3AH.
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Oil production rate
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Figure 71: WGPR of well D-3AH.
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Figure 72: WWPR of well D-3AH.
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Gas production rate
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Figure 71: WGPR of well D-3AH.
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Figure 72: WWPR of well D-3AH.
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Norne field case: well B-2H
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Figure 13: WBHP of well B-2H.
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Figure 14: WOPR of well B-2H.
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Figure 13: WBHP of well B-2H.
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Figure 14: WOPR of well B-2H.
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Oil production rate
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Figure 15: WGPR of well B-2H.
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Figure 16: WWPR of well B-2H.
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Figure 15: WGPR of well B-2H.
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Figure 16: WWPR of well B-2H.
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Recent experiments

Using a splitting solver to

I improve iterates of fully implicit solver (“NLP”),

I generate initial value for fully implicit solver (“Seq NLP”).
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Recent experiments (SPE10 layer)
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Recent experiments (SPE1)
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Recent experiments (Simplified Norne)
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Conclusion

I We can use sequential implicit methods on real-world field cases
I ... at least for history-matching runs

I We can use reordering methods to solve the transport problem
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Ongoing and future work

I Performance
I Hope to make sequential implicit method roughly twice as fast as

fully implicit.
I Use transport solver as nonlinear preconditioner to improve

performance of fully implicit simulation, possibly combined with
CPR.

I Parallelization
I Investigate possible approaches (multigrid-like, domain

decomposition, etc.)
I (Not in the near term)

I Robustness
I Ensure successful runs for all available testcases (you can help!)
I Investigate alternative solvers for single-cell problem (nested

bracketed solver rather than Newton)

33 / 36



Availability

All simulators used are free and open-source.

I OPM website: opm-project.org

I OPM software sources: github.com/OPM

To run Norne as shown in this talk:

I fully implicit:
flow NORNE ATW2013.DATA output dir=fully-implicit

(also see Norne tutorial on opm website)

I reordering:
flow reorder NORNE ATW2013.DATA ds max=0.1

output dir=reorder

flow reorder is available as source in current master on GitHub, also as
binary starting in upcoming release (2017.10)
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Thank you for listening!
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Performance outlook

Fully implicit solver
Stage Time (s)

Assembly 321
Linear solver 299

Update 13

Reordering sequential solver
Stage Time (s)

Pressure solver 1380
Transport solver 345

Hoped-for potential
Stage Time (s)

Pressure solver 260
Transport solver 70

Rationale behind hoped-for potential:
I New pressure solver, does about half the assembly work (value and 1

derivative, rather than value and 3 derivatives) and linear solver
deals with 1× 1 rather than 3× 3 blocks.

I Current transport solver does no convergence checking, brute-forces
5 global Gauss-Seidel iterations. Norne experiment leads us to
expect average of close to 1 Gauss-Seidel iteration per cell.

I Current transport solver writes excessive log output, taking
significant time.
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Transport equation fluxes: fractional flow formulation

Establish upwind directions for each phase (following Brenier and Jaffré):

UP (α, ij) ∈ i, j

(Function of pβ , ρβ , λβ for all β at both cells i and j; Tij and vT ).

Phase fluxes are then given by:

(bαvα)ij = bα,ij
λα,ij∑
β λβ,ij

(vT + TijGij)

where

bα,ij = bα,UP (α,ij)

λα,ij = λα,UP (α,ij)

Gα,ij =
∑
β 6=α

λβ,ij(Dα,ij −Dβ,ij)

Dα,ij = po,j − po,i − (pα,j − pα,i − gρα,ij(zi − zj))
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