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OPM Flow at a glance

v

Open source

v

Competitive performance

v

Full industrial complexity

» Well controls
» EOR: CO2, polymer
» CO2 sequestration

Automatic differentiation (AD)

v

Ambition: to be a strong base for both industrial development and
academic research



Main idea of this talk

We can gain performance by

>

>

>

sequential splitting,
reordering solvers,

(nonlinear preconditioners)

400

. without losing the ability to run
industrial full field models.
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The black-oil model, physical laws

“Black-oil" model assumptions

Lump hydrocarbon species into two pseudo-components (oil, gas)

Fluid Pseudo-component

Phase | Water | Oil | Gas
Aqueous X

Oleic X X
Gaseous X X

(Subset of more general compositional model)

Conservation of mass (per component «)

0
&(QSAQ)"—V'UQ:QQ

Darcy's law (per phase 3)

vg = —(krp/1p)K(Vps — ppg)



System of equations (fully implicit)

System of PDEs, one for each pseudo-component «:

0
&(¢Aa)+v'ua:Qa

where
Ay = waw, Uy = bwvw;
Ao =boso + 1y bysg, U, = bovy + rybgvy,
Ag =bgsg + 15bo5o, ug = byvy + 1rsbovo,
and also:
Syt 8o+ 8g=1
Po — Pw = Pecow
Po — Pg = Pcog-
and Darcy:

v = —(krp5/1p)K(Vps — ppg)



Coupling to well model

What is the source term, anyway?

0
&(QSAO()—’—V.UOL :(ga



Coupling to well model

What is the source term, anyway?

0
&(QSAO()—’—V.UOL :(ga

Well rates!
» Computed using separate well model(s).

» Must be solved simultaneously with reservoir equations.



Fully implicit discretization (1)

Notation:
Cell value: z; or z;

Connection value: x;;
Cell 4




Fully implicit discretization (1)

Flux Vi Notation:
o % ° Cell value: z; or z;
Connection value: x;;

Cell 4 Cell j




Fully implicit discretization (1)

Cells C(7) Notation:

° Cell value: z; or z;
Connection value: z;;




Fully implicit discretization (1)

([ J
Cells C(4) I
. Flux|v;, ?oﬁatl(l)n.
ell value: z; or z;
¢ a ° ) Connection value: z;;
Cell ¢ Cell j
[ ]
Discrete material balance
oY%
Ry = itz (Aai — A‘;,i) + Z Ua,ij — Qa,i =0

JEC(3)



Fully implicit discretization (II)

The discretized equations are, for each pseudo-component « and cell i:

oV

RGJ = Ati (Aoz,i - Z U, ij Qa i=0
JEC(3)
where
Ay = waw, Uy = bwvwa
Ao = b6 +rybysg, Uo = bovy + TV by,
Ay =bgsy +15bo50, Ug = bgvg + r5bov,.
Also:

5w+50+3g:1 Pcow = Po — Pw Pcog = Po — Pg-



Fully implicit discretization (lII)

The phase fluxes are computed for each connection ¢j as follows:

Payij =
= Pa,i

AHaﬂ;j

UP(a,ij) = {

(bava)
(rsbovo)ij =
(rvbgvg)ij

(Pai + Paj) /2

= DPavj — 9Paij(2i — 2j)
i AHa.; >0

j AH,;; <0

= (baXa)vUP(a,ij) TijAHa,ij
(1500Ao) U P(o0,i) Tij AHo,ij
= (rvbgAg)up(g.inTijAHy,ij

(Darcy discretized with TPFA using phase-based upwinding)



Solving the fully implicit discrete equations

Main method: Newton-Raphson

> solve large heterogenous linear systems

» challenging to precondition (CPR + AMG best?)
» must modify updates for phase changes
>

must handle convergence failures (timestep cuts)



Sequential splitting

Splitting pressure and transport:
» lets us solve two smaller problems rather than one large

» allows specialized methods to be used

> Pressure: multiscale methods
> Transport: reordering methods, streamline methods

> gives rise to splitting error



Important questions

» Can splitting methods be applied to real field cases?
> Yes!

» Will they yield improved performance for such cases?
> Yes, probably.

» Acceptable robustness compared to fully implicit methods?
> Yes, probably.



Recall...

Discrete material balance

_ oV

Foi =N

(Aa,i - Ag,i) + Z Ua,ij — Qa,i =0
JEC(i)



Sequential implicit discretization

Pressure equation: linear combination to eliminate saturation dep.

Ry =) 0aRo =0,
«@

1/bo — rs/bg o — 1/bg — v /bo

ow =1 bw 0o =
[bw, 1—rgry J 1—rgry

Store vrij = ), Va,ij for transport solver.

Transport equations
Ro = 0, Rg = Oa
with fluxes derived from vp:

(bava)s; = b Aaij

i e Ti;Gij).
7J25)‘6,ij (vr + T3;Gij)

Upwind b;;, A;; and gravity term G;; following Brenier and Jaffré
“Upstream Differencing for Multiphase Flow in Reservoir Simulation”



The reordering idea

Advection-dominated transport problems:
» Upwind discretization
» Information flows in direction of fluid flow

» Solution in upstream cells does not depend on solution in

downstream cells
(... unless we have loops or countercurrent flow)



Discretization setting (transport)

Fluxes vg 5, j € C(3).
Cells U(1, g).



Discretization setting (transport)

Fluxes v, 5, j € C(2).
Cells U (i, 0).



Reordering the transport equations

Rewrite transport equation (for cell 4, phase «):

Fiw) + Y Gilwi,x)vij(wi, x5,v7.5) =0
JeC()

vi;: signed flux from cell 7 to cell j
;. unknowns in cell 4

With upstream weighting we can write:

Fi(x Z GY (x5 vij (x5, v7.45) Z GP (z;)vij(zi,vri5) =0

JEU(7) JED(i)

Given z;,j € U(i), we can solve for z; separately!

Countercurrent flow = can only do this per phase
(but we will relax this later)

For 1D case: can solve sequentially from injector to producer!



Newton-Raphson vs. Nonlinear Gauss-Seidel

Newton-Raphson

r=F(z)
while ||r|| > tolerance do
Compute Jacobian matrix J = dF/dx
Solve Je =r
Update x =z — e
r=F(x)

Gauss-Seidel

r = F(z) while any ||r;|| > tolerance do
for all cells © do
Solve single-cell problem 3
L Update z;

r=F(z)

Perfect ordering: can drop outer loop!



General case: computing an ordering

What quantity to use?

Single-phase flow with no gravity: sort according to pressure.

General case:
» Phase pressure? Which phase?
» Phase fluxes? Which phase?

» Total flux? What about countercurrent flow?

Our answer is: use total flux



Small example

7 — 8 — 9 -
[
* .x
4 — 5 — 6 V= ;
b
1 — 2 — 3 - * o

After topological sorting (Tarjan's algorithm): unidirectional graph

- 4 > 7 > 8 > 5 » 2 > 3 > 6 —> 9

[t



Slightly bigger example

Natural ordering:




Ordering challenges

» Circular flow (gravity)

» Countercurrent flow (gravity, capillary pressure)

With stronger coupling, more mutually dependent cells:
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How to handle such sets (strongly connected components)?



Solution: Gauss-Seidel iterations

Gauss-Seidel

r = F(x) while any ||r;|| > tolerance do
for all cells i do
Solve single-cell problem i
L Update z;

r=F(x)
Apply outer loop, but only for strongly connected cells.
Convergence proofs:

2-phase + polymer vyes
3-phase black-oil no (but promising numerical results)




Norne field case

7321000

el Results:
TERNARY

Norne real field case, initial saturation values



Norne field case: well D-3AH

300 2.5x10° T T
e == [ —
] ; o]
= -
el | 2x10°
o |
s \ N
200 T
1.5x10°
. ¢
% £
o §
= =
1x10°
0
oo
©
. _ | | .
o 500 1000 1500 2000 2500 3000 3500 o 500 3000 3500

Bottom-hole pressure Gas production ra

3000
6000 ulymplt ——
My == p e
iy
5000 200 ]" il
v\L
4000 2000 / Ul
4
. £ |
£ oo H |
z |
1
P
i
2000 1000 J |
#l
P f
1000 500
il e
| ¢ o i
o i i
- = =L . s e o 500 1000 S 00 o0 3500
days

Oil production rate Water production rate




Norne field case: well B-2H
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Recent experiments

Using a splitting solver to
> improve iterates of fully implicit solver (“NLP"),
> generate initial value for fully implicit solver (“Seq NLP").



Recent experiments (SPE10 layer)
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Recent experiments (SPE1)
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Recent experiments (Simplified Norne)
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Conclusion

» We can use sequential implicit methods on real-world field cases
> ... at least for history-matching runs

» We can use reordering methods to solve the transport problem



Ongoing and future work

» Performance
» Hope to make sequential implicit method roughly twice as fast as
fully implicit.
> Use transport solver as nonlinear preconditioner to improve
performance of fully implicit simulation, possibly combined with
CPR.
» Parallelization
> Investigate possible approaches (multigrid-like, domain
decomposition, etc.)
> (Not in the near term)
» Robustness

> Ensure successful runs for all available testcases (you can help!)
> Investigate alternative solvers for single-cell problem (nested
bracketed solver rather than Newton)



Availability

All simulators used are free and open-source.
» OPM website: opm-project.org
» OPM software sources: github.com/OPM

To run Norne as shown in this talk:
» fully implicit:
flow NORNE_ATW2013.DATA output_dir=fully-implicit
(also see Norne tutorial on opm website)
» reordering:
flow_reorder NORNE_ATW2013.DATA ds_max=0.1
output_dir=reorder

flow_reorder is available as source in current master on GitHub, also as
binary starting in upcoming release (2017.10)
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Thank you for listening!
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Performance outlook

Fully implicit solver
Stage Time (s)
Assembly 321
Linear solver 299
Update 13
Reordering sequential solver Hoped-for potential
Stage Time (s) Stage Time (s)
Pressure solver 1380 Pressure solver 260
Transport solver 345 Transport solver 70

Rationale behind hoped-for potential:

» New pressure solver, does about half the assembly work (value and 1
derivative, rather than value and 3 derivatives) and linear solver
deals with 1 x 1 rather than 3 x 3 blocks.

» Current transport solver does no convergence checking, brute-forces
5 global Gauss-Seidel iterations. Norne experiment leads us to
expect average of close to 1 Gauss-Seidel iteration per cell.

» Current transport solver writes excessive log output, taking
significant time.



Transport equation fluxes: fractional flow formulation

Establish upwind directions for each phase (following Brenier and Jaffré):
UP(a,ij) €1,
(Function of pg, pg, Ag for all 8 at both cells ¢ and j; T;; and vr).

Phase fluxes are then given by:

Aa
(bava)ij = bo ,iJ Zﬁ )\; ('UT + /I’”GU)
ij

where

ba,ij = ba,UP(aif)
Aayij = Aa,UP(a,if)
Gaij Z)‘ﬂw avij — Dpij)
B#a
Da.ij = Do,j — Poi — (Pa,j — Pavi — 9Paij(2i — 25))
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