COZ2EOR simulations in OPM il IRIS

OPM meeting 19 of October.




Why COZEOR? 1l IRIS

Nauuons umes

U PARIS COP21 Conférence sur les Changements Climatiques 2015

U IEA: COEOR a stepping stone Paris france
for CCS

U CCS full scale demo in Norway.
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Why CO2EORsimulations? 1l IRIS

U Project planning and optimization.

A Well placement and control strategies.

A Many simulations with short / medium time scales. (years)
U Reservoir Characterization

A Incorporating dynamic data to improve the reservoir model. Ex. TL mixing parameter.
A Manysimulations with short / medium timscales(yearg

U Monitoring
A CO2 leakage.
A Long term CO2 storage (hundreds of years).

U Improved recovery / storage.
A Investigating mobility control alternatives. (C&&8am etc.)



Why CO2EOR simulationin OPM? il IRIS

u Why do we need an open reservoir simulator?

U Why not use existing commercial simulators? Eclipse/ Intergdietyigator CMG etc.

u OPM:
A Test facility for new methods and new models.
A Allows for tailored simulators for specific application.
A Transparency of code.
A Free to use.



Main mechanismn CO2EOR.

U CO2A OIL (Swellingof the oilphase)

A Mobilize the oil (since the trapped oil contains Purchased cO, | Injscted (= ] Regycled |

less hydrocarbons)

A Reduces viscosity of the oil

A Increases density of oil (brings it closer to watef
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A Increases viscosity of the gas
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A Lowers the interfacial tension between the COZ% >
rich gas phase and the oil phage.lower
residual oil saturation.

U Forms single phase locally at minimum

miscibility pressure (MMP)

U CO2A Water



Extended blackil (solvent) simulator 1l IRIS

U Gas and oil is represented by thrpseudo components (oil, solution gas, and injected solvent)
U Effective hydrocarbon relative permeability, viscosity and density.

essentially,

all models are wrong,
but some are useful

U PROS

A Use existingplackoilmodels.

A Computationally more efficient than compositional simulators. George E. P. Box

U CONS

A Determining the relevant effectiveupscaledjuantities.
A Can we trust the results?

u Papers:

A M. R. Todd and W. Uongstaff Thedevelopment, Testing and Application of a numerical simulator for predicting Miscible Flood
Performancel972 SPEB484

A M. R. Todd. Modelingequirements for Numerical Simulation of CO2 Recovery Proc&REsCalifornia Regional Meeting
Society of Petroleum Engineers, 198PE 7998

A Killough, J. E., Kossack Fifth Comparative Solution Project: Evaluation of Miscible Flood Simulators. Society of Petroleum
EngineersC A.1987. SPE 16000

A KaracagrCaner.Mixingissues in CO 2 flooding: comparison of compositional and extendeebillaitkulators Colorado
School of Mines, 2014



Model formulation

U Effective hydrocarbon relative permeability
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"Y : effective criticalgassaturation
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Model formulation

miscible gas

u Effective viscosities

A ‘ ‘ t ‘ :
A ‘ ‘ t ‘
A ‘ ‘ t ‘ Muggeridge, Ann, et al. "Recovery rates, enhanced oil recovery and technological fhitsTrans. R. Sq2014)

: fully mixed viscosity of oil and solvent (using the % power mixing rule)

: fully mixed viscosity ajil, gas angolvent (using the ¥ power mixing rule)
: fully mixed viscosity afolvent and gagusing the ¥ power mixing rule)

1 :is the TodeLongstafimixing parameter

U Other implemented effects
A Effective densities

A Reduced effective residual oil saturation / critical gas saturation due to water blocking oil fille
pores

A Pressure effecten capillary pressure, viscostyd density miscibility
A Pressure dependent Toddbngstaffparameter
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Comparison SPE 5 il IRIS

U Comparison of €omponent miscible simulators and compositional simulators

U Three cases. Where average reservoir pressure is:
1. Much lower than MMP (immiscible case)
2. Near or above MMP
3. Below first, new MMP after Hpressurizing

PROD
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Comparison SPE ®PMFLOVWECclipsé

SPE 5case 1

SPE 5 case 1:

With no mixing
effect on the
densities
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Comparison SPE ®PMFLOWECIipse¢
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Fieldexample 1 (Model 2) m IRIS

U Setup
A Run 5295 days of history.
A LRAT controllegroductionwells. After 0.5
A CO2 injected from day 5479 years of CO2

Injection

A Linear ramp between 16250
Barsato model pressure
dependency in the miscibility

A The pressure dependency in
the ToddLongstaffparameter
isneglected

Cell Results:
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Good match with Eclipse il IRIS
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Comparison of production rates of oil and CO2 between Flow (dots)
and Eclipse (solid) when injecting 0.1M (red), 0.5M (blue) and 1.0M (black)
of CO2.



Performance Model 2 ii IRIS

U Comparison with Eclipse (only the co2 injection part)

Case Flow Eclipse
1 138C 500C 0,28  #Intel Core i#6700,
2 171C 895C 0,1¢ 4(8) @ 3.4 GHz, 8M

3 180C 860C 0,21 . 1pe runtime

comparison is
approximate.
Different tuning may

Case npl np2 np4 change the run time of
both the simulators.
1 413€ 319C 342¢
2
3

U MPI (history and co2 injection, only Flow )




CO2 injection gives enhanced oil recovery. i IRIS
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Comparison of total field production rates of oil (left) and water (right) when injecting
0.1M (red), 0.5M (blue) and 1.0M (black) SM3/day of CO2 (solid) and Gas (dots)
(0.2, 1 and 2 tons of G@r. Day).



CO2 storage potential. 1l IRIS

9
5 x10
5 x10 3.5 Table 1: Constant values for NPV calculation
4.5 3 =#= Pure Gas 60 -
- - a0 - - 80 L= 0il price (8/SM?) 500
= 4 o . e e :
|5 20 100 P | Gas price ($/SM?) 0.15
-~ 3.5 -
g Gas injection cost ($/SM?) -0.2
3 -
g Water disposal cost ($/SM?) -40
= 2.5 . N v
t Water injection cost ($/SM*) -30
al
2
8 CO; tax credit ($/ton) 60
E 1.3 CO; injection cost ($/ton) 1]
3
o 1 | CO; production cost ($/ton) -10
0-5 ¢ Discount rate 0.1
0 1 1 1
5000 6000 7000 8000 9000 oo 5 10
Time (days)

Gas injection rates (106, SM3/day)

Left: Cumulative C3torage at the CQOnjection rates of 1e6, 5e6 and 10e6 SM3/day.
Right: Comparison of NPV values at differeny €&@turing credits vs. pure natural gas injection.
The right figure shows that GEOR is more economical beneficial for this field than pure gas injection.



Field scale example 2 (Model 2.2) I[[ IRIS

U Setup
A Run 14 years of history.
A Change to ORATNtrolled productiorwells.
A CO2 injection for 50 years

A Linear ramp between 10095
Barsato model pressure
dependency in the miscibility

A The pressure dependency in
the ToddLongstaffparameter
isneglected
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Comparison with Eclipse results. I[[ IRIS
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