> ROBUST TUNING TO IMPROVE SPEED AND MAINTAIN ACCURACY OF FLOW SIMULATION

OPM summit 18-19 October, Bergen | Rohith Nair

for life

OVERVIEW

- Introduction
- > Model tuning as an optimization problem
- Methodology
- > Experiments and Results
- Conclusions
- > Future Work

INTRODUCTION

- > Numerical tuning of a reservoir model can considerably affect simulator performance
- > Tuning affects both speed and accuracy
- > Models are run multiple times for optimization and model updating workflows
- > There are multiple tuning parameters which can be changed

MOTIVATION

- Limitations
 - > Tuning affects both speed and accuracy
 - Is carried out by manual trial and error no formal way
 - > Only a single model can be tuned at a time
- > Challenges
 - > How to automate model tuning ?
 - How to tune an ensemble of models ?
 - > How to improve speed while maintaining accuracy ?

MODEL TUNING AS AN OPTIMIZATION PROBLEM

- Consider the FLOW simulator as a black box
- > Carry out robust (ensemble of models) optimization with:
 - Controls = FLOW tuning parameters
 - > Objective = Minimize number of linear iterations
- > Constraints can be placed on the field production and injection volumes

OPTIMIZATION METHODS

>

- Move to the point which has the highest objective function value
- > Slow convergence rate towards optimum
- > Calculates a direction in which objective function can be maximized
 - Faster convergence rate towards optimum.

STOCHASTIC GRADIENT BASED OPTIMIZATION

- 1. Choose an initial set of controls
- Generate an ensemble of control vectors stochastically (red dots)
- 3. Evaluate each ensemble member of the controls (blue dots)
- 4. Estimate the gradient from the function evaluations (blue dots)
- 5. Use an optimization algorithm to find an updated set of controls
- 6. Repeat from step 2 until convergence is achieved.

innovation for life

STOSAG APPROACH

TNO innovation for life

OPTIMIZATION FORMULATION

- Objective
 - > Minimize Overall linearization's + Overall linear iterations
- Controls
 - Timestepping controls
 - TSINIT, TSMAXZ, TSMINZ, TSMCHP, TSFMAX, TSFMIN, TSFCNV, TFDIFF
 - Inear_solver_maxiter (max number of linear iterations)
 - max_strict_iter (max iterations before relaxing max residual condition)
 - max_iter (max number of non-linear iterations)
 - > All controls scaled to order 1, Initial guess defaulted values

====== End of sin	mulation ==========
Update time (seconds):	21.4063 (Failed: 0; 0%)
Overall Linearizations: Overall Newton Iterations: Overall Linear Iterations:	1021 (Failed: 0; 0%) 832 (Failed: 0; 0%) 14582 (Failed: 0; 0%)

OPTIMIZATION FORMULATION (CONT)

- Constraints
 - max_strict_iter < max_iter input constraint</pre>
 - > TSMAXZ < Report step duration bound constraint
- Reservoir models
 - > REEK (20 ensemble members)
 - NORNE (deterministic)
- Gradient definition
 - Deterministic 10 perturbation
 - Robust 1 perturbation per realization

RESULTS – NORNE (DETERMINISTIC)

- Objective function = Overall linearizations + Overall linear iterations (Scaled)
- > 31 % decrease in objective over 10 optimizer iterations

RESULTS – NORNE (DETERMINISTIC)

Simulation Summary			Case		Reduction in iterations (Case 2 v/s case 3)
Overall Well Iterations	914			11%	•
Oevrall Linearizations	1928	2276	1528	21%	33%
Overall Newton Iteration	1590	1794	1235	22%	31%
Overall Linear Iterations	24275	27999	18865	22%	33%
Overall Convergence Problems	5	1	1		

- > ~ 22% reduction in overall number of linear iterations (Case 1 v/s Case 3)
- > ~ 33% reduction in overall number of linear iterations (Case 2 v/s Case 3)
- Lesser number of convergence problems (Case 1 v/s Case 3)

RESULTS – NORNE (DETERMINISTIC)

Minor differences in field rates and oil saturation between optimized and base case models

innovation for life

RESULTS – REEK(ROBUST)

- Ensemble Size = 20
- > Optimization converges in a single iteration
- REEK model is comparatively simple need not have lot of scope for optimization
- Majority of realizations have reduced number of linear iterations
- Robust solution Single set of tuning parameters for all 20 ensemble members which reduces expected overall number of linear iterations
- Robust solution more computationally efficient that having different tuning parameters for each model

RESULTS – REEK(ROBUST)

Simulation Summary	Base Case		Reduction in iterations
Mean Overall Well Iterations	323.25	324.3	0%
Mean Overall Linearizations	1067.85	1048.45	2%
Mean Overall Newton Iteration	875.15	850.95	3%
Mean Overall Linear Iterations	14564.75	14112.7	3%

Robust solution - Single set of tuning parameters for all 20 ensemble members which reduces overall number of linear iterations by 3%

APPLICATIONS

- > Pre-processing step for model updating and optimization workflows
- > Ensemble tuning
- > Reduce convergence issues for:
 - > Water coning studies
 - Crossflow cases
 - > Viscous fingering
 - LGR cases
- > Used in conjunction with CO2-EOR optimization, well placement optimization etc.

CONCLUSIONS

- > Optimization workflow able to automate model tuning
- > Computationally efficient
- Optimization workflow robust solution which reduces overall number of linear iterations for an ensemble of reservoir models
- > 33 % reduction in number of linear iterations for the Norne deterministic model
- > 3 % reduction in number of linear iterations for the REEK robust case
- > Larger and more complex model have a larger scope for optimization

FUTURE WORK

- > Constrained optimization with constraints on field production and injection volumes
- > Robust Optimization with the Norne field model

> THANK YOU FOR YOUR ATTENTION

