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INTRODUCTION

Numerical tuning of a reservoir model can considerably affect simulator performance

Tuning affects both speed and accuracy

Models are run multiple times for optimization and model updating workflows

There are multiple tuning parameters which can be changed

Time stepping controls

Convergence controls
Newton and linear iteration controls



MOTIVATION

Limitations

Tuning affects both speed and accuracy

Is carried out by manual trial and error – no formal way

Only a single model can be tuned at a time

Challenges

How to automate model tuning ?

How to tune an ensemble of models ?

How to improve speed while maintaining accuracy ?



MODEL TUNING AS AN OPTIMIZATION PROBLEM

Consider the FLOW simulator as a black box

Carry out robust (ensemble of models) optimization with:

Controls = FLOW tuning parameters

Objective = Minimize number of linear iterations

Constraints can be placed on the field production and injection volumes



OPTIMIZATION METHODS

Gradient Free Methods Gradient Based Methods 

› Move to the point which has the highest 

objective function value

› Slow convergence rate towards optimum

› Calculates a direction in which objective 

function can be maximized 

› Faster convergence rate towards optimum. 



STOCHASTIC GRADIENT BASED OPTIMIZATION

1. Choose an initial set of controls

2. Generate an ensemble of control vectors 

stochastically (red dots)

3. Evaluate each ensemble member of the 

controls (blue dots)

4. Estimate the gradient from the function 

evaluations  (blue dots) 

5. Use an optimization algorithm to find an 

updated set of controls

6. Repeat from step 2 until convergence is 

achieved.



STOSAG APPROACH
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OPTIMIZATION FORMULATION

Objective

Minimize Overall linearization's + Overall linear iterations

Controls

Timestepping controls

TSINIT, TSMAXZ, TSMINZ, TSMCHP, TSFMAX, TSFMIN, 

TSFCNV, TFDIFF

linear_solver_maxiter (max number of linear iterations)

max_strict_iter (max iterations before relaxing max residual 

condition) 

max_iter (max number of non-linear iterations)

All controls scaled to order 1, Initial guess – defaulted values



OPTIMIZATION FORMULATION (CONT)

Constraints

max_strict_iter < max_iter – input constraint

TSMAXZ < Report step duration - bound constraint

Reservoir models

REEK (20 ensemble members)

NORNE (deterministic)

Gradient definition

Deterministic – 10 perturbation

Robust – 1 perturbation per realization



RESULTS – NORNE (DETERMINISTIC)

Objective function = Overall linearizations + Overall linear iterations (Scaled) 

31 % decrease in objective over 10 optimizer iterations



RESULTS – NORNE (DETERMINISTIC)

~ 22% reduction in overall number of linear iterations (Case 1 v/s Case 3)

~ 33% reduction in overall number of linear iterations (Case 2 v/s Case 3)

Lesser number of convergence problems (Case 1 v/s Case 3)

Simulation Summary

Base case with FLOW 

default TUNING (Case 1)

Base Case with ECL 

default TUNING (Case 2)

Optimized 

Case 

(Case 3)

Reduction in 

iterations

(Case 1 v/s Case 3 )

Reduction in 

iterations

(Case 2 v/s case 3)

Overall Well Iterations 914 1137 817 11% 28%

Oevrall Linearizations 1928 2276 1528 21% 33%

Overall Newton Iteration 1590 1794 1235 22% 31%

Overall Linear Iterations 24275 27999 18865 22% 33%

Overall Convergence 

Problems 5 1 1



RESULTS – NORNE (DETERMINISTIC)

Minor differences in 

field rates and oil 

saturation between 

optimized and base 

case models
FOPR

FWIR

FGPR

DIFF_SOIL



RESULTS – REEK(ROBUST)

Ensemble Size = 20

Optimization converges in a single iteration

REEK model is comparatively simple - need not have lot of scope 

for optimization 

Majority of realizations have reduced number of linear iterations

Robust solution - Single set of tuning parameters for all 20 

ensemble members which reduces expected overall number of 

linear iterations

Robust solution more computationally efficient that having different 

tuning parameters for each model



RESULTS – REEK(ROBUST)

Robust solution - Single set of tuning parameters for all 20 ensemble members which reduces overall number of 

linear iterations by 3%

Simulation Summary Base Case Optimized Case 

Reduction in 

iterations

Mean Overall Well Iterations 323.25 324.3 0%

Mean Overall Linearizations 1067.85 1048.45 2%

Mean Overall Newton Iteration 875.15 850.95 3%

Mean Overall Linear Iterations 14564.75 14112.7 3%



APPLICATIONS

Pre-processing step for model updating and optimization workflows

Ensemble tuning

Reduce convergence issues for:

Water coning studies

Crossflow cases

Viscous fingering

LGR cases

Used in conjunction with CO2-EOR optimization, well placement optimization etc.



CONCLUSIONS

Optimization workflow able to automate model tuning

Computationally efficient

Optimization workflow robust solution which reduces overall number of linear iterations for an ensemble 

of reservoir models

33 % reduction in number of linear iterations for the Norne deterministic model

3 % reduction in number of linear iterations for the REEK robust case

Larger and more complex model have a larger scope for optimization



FUTURE WORK

Constrained optimization with constraints on field production and injection volumes

Robust Optimization with the Norne field model
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