
OPM	FLOW
IN	MSO4SC
AND	OTHER STORIES
Atgeirr	Flø	Rasmussen

About SINTEF

Vision:	technology for	a	better society

• independent,	not-for-profit organization

• largest for-contract research in	Scandinavia,	fourth largest in	Europe	

• 2100	employees

• NOK	3.1	billion	turnover,	90%	’won’	in	open competition

• more	than 7000	research projects for	some 2300	clients

• offices in	Trondheim,	Oslo,	Bergen,	Brussels,	Houston,	.	.	.	

2

Computational Geosciences group

• One	of eight research groups at	the department of Mathematics &	Cybernetics,	
SINTEF	Digital	

• Eleven	researchers/postdocs/PhD students	

• Offices	in	Oslo,	Norway	

• Performs a	mixture of basic and	applied research

• Well known for	our open-source software:	MRST	and	OPM	

• Internationally oriented

• Strong publication record

• Main	clients:	Statoil,	ExxonMobil,	Research	Council	of Norway,	Wintershall,	.	.	.	
3

Some	stories	of	mathematical	
software

Some	stories	of	mathematical	software

• Modeling,	simulation,	optimization	for	societal	challenges	(MSO4SC)

• The	Open	Porous	Media	initiative

• Flow:	from	proof-of-concept	to	deployable	simulator

• OPM	Flow	in	MSO4SC

• A	problem	with	grid	interfaces

• Collaboration	joys	and	pains

• Making	Flow	perform	well

5

Modeling,	simulation,	optimization	
for	societal	challenges	(MSO4SC)

6

Societal	challenges
• …	in	health,	energy,	climate,	infrastructure,	pollution,
• …	benefit	from	matematical modeling, simulation and	optimization
• …	are	highly complex	problems

Expertise	required
• …	in	the	problem	domain,
• …	in	numerical	and	other	mathematics
• ...	in	programming,	parallelization,	HPC
• …	in	databases	and	visualization

Typically	not	easily	available	to	decision	makers!
7

Motivation

H2020	project started in	late	2016

Main	ideas:
• Provide mathematical technology as	a	service
• …	through	an	HPC	oriented	cloud	e-infrastructure
• Lower the barrier to	using MSO	software!

What we do

• Build an	online	portal	and	repository for	MSO	software
• Make	it	simple	and	quick to	run	MSO	software
• Run	and	scale on cloud or	HPC	facilities

Partners:
• ATOS	(Spain)
• TU	Berlin	(Germany)
• Uni.	Strasbourg	(France)
• SINTEF	(Norway)
• BCAM	(Spain)
• Szechenyi Istvan	Uni.	(Hungary)
• Konrad-Zuse Zentrum (Germany)
• CESGA	(Spain)
• KTH	(Sweden)
• EU-MATHS-IN	(Netherlands)

8

The	MSO4SC	project

FEniCS and	FEniCS-HPC
• Automated solution of PDEs
• Finite element	methods,	weak form
• Strong parallel scalability

Feel++
• Embedded	Domain-Specific Language	(DSL)	in	C++
• Galerkin methods
• Shield	user from	solver/parallel complexity

Open	Porous Media	(OPM)
• Collection	of C++	components and	programs
• Finite volume methods
• Focus	on industrial usage

9

Mathematical	frameworks (all	open source)

10

Pilot	applications (I)

FloatingWindTurbine (BCAM)
• Fluid-structure interaction

3DAirQualityPrediction	(SZE,	KTH)
• CFD,	integration of real-time	data

ZIBAffinity (ZIB)
• Molecular affinity and	binding	energy

11

Pilot	applications (II)

Eye2Brain	(UNISTRA)
• Biological system	simulation

HifiMagnet (UNISTRA)
• Coupled nonlinear	el-mag.	to	35	T

OPM	Flow (SINTEF)
• Multiphase flow in	porous medium

Will	offer	MSO	software with
• No	installation
• Easy scaling on cloud/HPC

Catalog of software
• MSO	frameworks
• MSO	applications
• Extensible

Data	catalog (ckan)
• Open	benchmark cases
• Sharing and	learning opportunities
12

The	MSO4SC	Portal

The	Open	Porous	Media	initiative

• Open	Porous Media	software components are or	have	
been developed by:	
• Companies	(Statoil,	Total)
• Research	institutes (SINTEF,	IRIS,	TNO)
• Universities (U.	Stuttgart,	NTNU)
• Consultants	

• Financing from	industry and	public (RCN,	EU)	

• Open	source allows easier collaboration!	

14

The	Open	Porous Media	initiative

Started in	2009	to	combine strengths:
• Grids	and	discretizations (SINTEF)
• Advanced	fluid	models (U.	Stuttgart,	U.	Bergen)
• Industrial	know-how and	funding (Statoil)
• Build on the DUNE	project (many contributors)

Vision:	a	long-lasting,	efficient,	and	well-maintained,	open-
source software for	flow and	transport	in	porous media

Ambition:	to	be	a	strong base	for	both industrial
development and	academic research

15

The	Open	Porous Media	initiative – origin

Research	
community

Software	
providers

Industry	
companies

• Porous medium	is	strongly heterogeneous and	
anisotropic.	

• Grids	with high aspect ratio,	fully unstructured,	
polygonal	cells.	

• Nontrivial	phase behaviour.	Phases can appear and	
disappear as	fluid	components dissolve or	vaporize.	

• Coupling to	wells can connect regions	that are far	
away from	each other.	

• The	models are highly nonlinear.	

16

What makes	reservoir problems	hard?

Collaboration	with U.	Stuttgart
• Solving various fluid	problems	(Stuttgart)	on corner-point grids	

using the CpGrid class (SINTEF)

Innovative	simulator	for	polymer-EOR
• Reordering nonlinear	solvers,	improved stability

Joint	Industry	Project	with SINTEF,	IRIS,	Statoil	and	Total
• Aim:	build framework for	proof-of-concept and	prototype	simulators

• Builds IMPES-type	simulators	for	black-oil and	CO2-injection	problems

• Towards the end	of the project:	fully implicit black-oil simulator	based on AD	
(what would become today’s Flow)

17

The	OPM	initiative,	2009-2013
CO2-injection (Johansen)

OPM Symposium 28-29 May 2013

A	transformative	year!

Fully-implicit black-oil simulator	gets attention of industrial partner
• Becomes main target	for	development (eventually receives the name Flow)

• In	retrospect:	reduced focus on numerics,	increased focus on industrial usability

New	projects fund development
• Direct	funding from	industry

• Funding from	Climit to	make	simulator	usable for	CO2-EOR	and	CO2-storage	studies

Close	collaboration between SINTEF,	IRIS,	Statoil	and	some German contributors

18

The	OPM	initiative,	2013

Main	focus still	on Flow and	industrial usability
• Robustness

• Performance

• Eclipse-compatible input	and output

• Well and	group controls,	multi-segment	wells,	

• Including solvent	model (for	CO2	uses)	and	polymer	model

• MPI	parallelism,	exploiting the parallel Dune	capabilities (moderately)

Collaboration	still	strong among SINTEF,	IRIS and	Statoil	etc.
• University of Stuttgart	not	really involved with Flow,	but using other parts	(grid	

etc.)

New	groups are interested
• TNO	is	now participating,	new academic and	industrial groups joining

19

The	OPM	initiative,	2014-2017

Flow:	from	proof-of-concept	to	
deployable	simulator

Stein	Krogstad	introduces	automatic differentiation
(AD)	to	the Matlab Reservoir Simulation Toolbox (MRST)
"a	set of techniques to	numerically evaluate the derivative	of a	function specified by	
a	computer	program.	AD	exploits the fact that every computer	program,	no matter	
how complicated,	executes a	sequence of elementary arithmetic operations
(addition,	subtraction,	multiplication,	division,	etc.)	and	elementary functions (exp,	
log,	sin,	cos,	etc.).	By	applying the chain rule repeatedly to	these operations,	
derivatives	of arbitrary order	can be	computed automatically,	accurately to	working
precision,	and	using at	most	a	small constant factor more	arithmetic operations
than the original	program.”

Creates (our)	first	fully implicit black-oil simulator	using AD

AD	techniques already used	in	GPRS-AD,	others

21

Before Flow

Name:	”sim_fibo_ad”	(very catchy!)

Able to	run	SPE1 (only very simple	and	
small test	cases)

Written using small AD	library similar to	
MRST’s AD	class (1	week development)

Originally:	wanted to	use GPRS’	library

1	month later:	first	version done	(as	well
as	2p	pressure/transport/impes solvers)
22

”Flow”	in	2013

Prototype	gets attention from	industrial partner	(more	
than expected)

Industrial	partner	convinces SINTEF	and	IRIS	to	focus C++	
development on fully implicit simulator

Some reasons:
• Fully implicit method is	the industrial standard
• Research	results will be	measured against this
• Impatient with commercial vendors
• Commercial	software cycle slow
• Eager to	make	research groups to	work together

23

What is	all	the fuss about?

New	input	deck reader:	opm-parser	(by	Statoil)
• Allows high degree of Eclipse compatibility
• Manipulate state variables	like	PORV,	transmissibilities
• Supports	SCHEDULE	section well

Able to	run	SPE9	(spring)	and	Norne	(fall)
• Mostly matching	Eclipse results
• This	was a	huge	effort,	implementing dozens of features

small and	large in	order	to	match	
• Bad	performance:	SPE9	takes 3	minutes…

No	OPM	release this year
• Concentrating on improving Flow
• In	retrospect,	not	a	good idea

24

”Flow”	in	2014

MPI-parallel version working
• Poor scaling,	not	fully feature-complete

New	name for	simulator:	Flow

Black-oil +	polymer	EOR,	black-oil +	solvent	(CO2)

Improved Eclipse match
• Dozens more	small fixes and	features

Performance improvements
• ~6	times	slower than Eclipse on Norne	in	March 2015
• ~3	times	slower in	October 2015

OPM meeting, Trondheim, 11 March

Norne results: Injecting wells
BHP Gas Water

C-3H

F-1H

25

Flow in	2015

Multi-segment	wells
• Initially not	completely integrated with other features
• Only handling	a	subset of Eclipse features
(both points much improved in	2017)

New	output	facilities
• Summary and	restart output	much improved
• Configurable from	deck
• Completely new log-type	output	facility (to	terminal	and	PRT	files)

Performance improvements
• ~1.7	times	slower than Eclipse on Norne	in	October 2016
• MPI	parallel version scales on workstations (not	HPC-level)

26

Flow in	2016

Performance improvements
• ~1.1	times	slower than Eclipse on Norne	in	October 2017
• ~0.9	times	slower than Eclipse (so:	faster!)	on another real	reservoir
• 5	times	faster	than Eclipse for	some solvent/CO2	models!
• Robustness:	equal to	or	better than Eclipse on target	ensembles

Manual	released in	October

Containerization:	Docker,	Singularity
• EU-projectMSO4SC supports	cloud/HPC	effort
• Flow runs	on any platform through containers

OPEN POROUS MEDIA

Flow Documentation Manual

OPM FLOW VERSION: 2017-10
MANUAL REVISION: Rev-0

27

Flow in	2017

Performance and	ease of use
• Linear	solver improvements,	better preconditioning
• Better	parallel scalability
• Run	Flow in	cloud/HPC	with ”one click”	deployment

New	features
• Adjoints
• Thermal option
• More	and	improved CO2	fluid	models
• Features needed to	run	on more	field models (such as	aquifers)

New	methods
• Sequential implicit methods,	reordering
• Higher-order	methods

28

What are we*	currently working on
*	not	just	SINTEF

Realize ambition:	to	be	a	strong base	for	both industrial
development and	academic research
• Strong international collaboration
• Be	the default companion to	MRST	in	research and	education
• Address industry needs

Continuous improvements to	existing code base
• performance and	scaling
• ease of use and	deployment
• features (dual-porosity,	aquifers etc.)
• methods (consistent discretizations,	higher order	etc.)
• robustness
• flexibility
• ease of programming

29

Where would we like	to	go with Flow (I)?

Photo	credit:	Statoil

Covering future needs
• Compositional models?
• Fracture flow?
• Huge	models?

Integrating and	covering more	of the toolchain
• Integrate with ResInsight?
• More	flow diagnostics/reduced models?
• Open	geomodeling software?

Collaboration
• Current approach works. Scale to	many more	contributors?

Offering commercial support?
30

Where would we like	to	go with Flow (II)?

OPM	Flow	in	MSO4SC

• Expert	in	scientific computing
• Juggles libraries and	compilers
• Solves mysterious build errors
• Knows CMake intimately
• Mathematician
• Knows numerical methods
• Understands	what to	do	when it	does not	converge
• Understands	the limitations and	errors
• Domain expert in	reservoir simulation
• Knows the why,	not	just	the what
• Understands	the underlying	processes
• Elite	engineer
• Knows the input	deck format	by	heart
• Can coax the simulator	to	do	things it	was not	designed to	do

32

The	ideal	Flow user (not	developer)

• Expert	in	scientific computing
• Juggles libraries and	compilers
• Solves mysterious build errors
• Knows CMake intimately
• Mathematician
• Knows numerical methods
• Understands	what to	do	when it	does not	converge
• Understands	the limitations and	errors
• Domain expert in	reservoir simulation
• Knows the why,	not	just	the what
• Understands	the underlying	processes
• Elite	engineer
• Knows the input	deck format	by	heart
• Can coax the simulator	to	do	things it	was not	designed to	do

33

The	ideal	Flow user (not	developer)

!

• Take OPM	to	where usage is	going to	be
• Cloud,	ensembles,	larger scales

• Improved visibility and	dissemination
• Get more	users
• Get more	feedback
• Get more	contributors

• Gain new clients for	our services	

• Improve OPM	software
• Deployability
• Usability

• Scalability

34

Why MSO4SC

A	problem	with	grid	interfaces

36

Reservoir grids	are ”bad”

• Bad	cell shapes
• Arbitrary many connections
• Huge	anisotropy ratios
• Very hetereogenous properties

Flow:	FV	order	1,	upwind	weighting

Requires:
• Connectivity	graph
• Transmissibilities on	graph	edges
• Cell	depths	and	volumes

Ideal	grid	interface:	only	the	above

High	flexibility:
• Manipulate	transmissibilities (faults)
• Manipulate	connectivity	graph	(fake	aquifers)
• Agnostic	to	actual	grid	type	(CP,	PEBI	etc.)

Upscaling:	mimetic method

Requires:
• Grid	that is	a	cell-complex
• Interface	areas	and	centroids
• Cell	volumes and	centroids

Ideal	grid	interface:	a	cell-complex interface

Can support	other discretizations:
• Higher-order	methods
• Streamline methods
• Virtual	Element	methods (and	some FE)

37

How	do	we write our space discretizations?

38

How	can we eat our cake and	have	it	too?

Cell-complex grid
• Parallel
• Adaptive

Advanced	discretizationsSimple	graph layer

Flexible
manipulations

Finite Volume	
codes (discr.	ops)

Sketch of an	idea:

Example problems	with this:
• Implement equation once,	yet have	discretization flexibility?
• Manipulations restrict adaptivity or	vice	versa

Collaboration	joys	and	pains

Code	quality issues
• No	unified coding standard
• Risk	of code duplication,	maintainance headaches
• Inelegant mixing of approaches and	philosophies

Bureaucracy
• Pull	Request workflow is	nontrivial
• Code	review is	time-consuming
• GitHub discussions can derail to	center on unimportant issues

Focus
• Different	goals	among collaborators
• Research	vs.	Industry

40

Costs of collaboration

Find consensus	on long-term	goals
• We want OPM	to	succeed
• We agree that industrial relevance is	key

Communication
• Weekly video	meetings
• GitHub Pull	Requests are actively discussed
• OPM	meetings and	other face-to-face	meetings

Professional	approach to	development
• Seek courtesy and	good tone	(sometimes we fail)
• Automated testing	(unit	tests,	integration tests)

41

What we do	about it

OPM	could never	have	reached its current state without
• SINTEF	(grids,	discretizations,	numerics,	MRST)
• IRIS	(robustness,	testing,	making it	converge)
• Statoil	(I/O	code,	focus,	funding)
• Individual contributors and	Dune	project devs

(local AD	assembly,	linear	solvers,	parallel approach)

None	of the above could have	made it	all	by	themselves!

42

More	than the sum	of its parts

Making	Flow	perform	well

A. Assembly	of nonlinear	equations?
B. Solving linear	systems?
C. Input/output?
D. Other things?

Answer changes over	time!

For	OPM	Flow and	our target	problems,	always A	or	B.

(I/O	performance has	also been improved 3x)

44

What is	the main bottleneck?

Image	from	Joel	McKelvey

Linear	solver horrendously slow
• UMFPACK,	direct solver
• Works	for	very small systems	(SPE1)
• Breaks	down for	a	few thousand cells

Root cause:	linear	system	not	well
suited for	direct solver

Root cause:	direct solvers do	not	
scale well

45

Bottleneck 1
Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water	sat Gas	mix/s Well flux Well bhp

Use Schur	complement to	eliminate
well unknowns

Use iterative	solvers from	Dune

Use 2-stage	CPR	preconditioner
• Solve almost-elliptic system	for	pressure

(with AMG	precond.)
• Solve full	system	with ILU0	precond.

Results:
• SPE9	runtime 3	minutes (was 30	min)
• Norne	case	~6	times	Eclipse runtime

46

Bottleneck 1	– addressed
Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water	sat Gas	mix/s Well flux Well bhp

Figure:	Schur	complement eliminates well unknowns

Assembly	of nonlinear	equations slow
• Functions implement residual	equations
• AD	class produces Jacobians

Root cause:	simple	operations too expensive
• Every +-*/	op triggers	sparse matrix creation
• Even	when matrix is	diagonal	or	identity!

flux[phase] = upwind.select(b * mob) * (transi * dh);

Every multiplication,	assignment and	select()	trigger	sparse matrix creation.

47

Bottleneck 2

Replace SparseMatrix in	AD	class with smart	wrapper
• Wrapper treats zero,	identity and	diagonal	matrices with custom code
• No	change at	all	to	the simulation code!

Result:
• Norne	case	~3.5	times	Eclipse runtime

flux[phase] = upwind.select(b * mob) * (transi * dh);

Now only select()	trigger	sparse matrix creation (since result depends on unknowns in	multiple	cells)

48

Bottleneck 2	– addressed

Linear	solver dominates runtime (again)
• Time-consuming setup of matrices for	

preconditioner and	solver
• Outer	linear	solve of full	system	is	slow

49

Bottleneck 3
Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water	sat Gas	mix/s Well flux Well bhp

Change system	matrix structure
• Use block-ILU0	instead of CPR
• Before:	3x3	system	of NxN sparse matrices
• Now:	NxN sparse matrix of 3x3	blocks

(or	4x4	for	polymer	etc.)

Result:
• Norne	case	~2.5	times	Eclipse runtime

50

Bottleneck 3	– addressed
Wp Wsw Wx

Op Osw Ox

Gp Gsw Gx

Wq Wbhp

Oq Obhp

Gq Gbhp

Cq Cbhp

Qp Qsw Qx Qq Qbhp

Conserve O

Well flow

Well control

Conserve W

Conserve G

Pressure Water	sat Gas	mix/s Well flux Well bhp

Assembly	of residual	and	Jacobians dominate (again)

Root cause:	cache-unfriendly use of AD	class

Root cause:	(still)	too many sparse matrix ops

51

Bottleneck 4

flux[phase] = upwind.select(b * mob) * (transi * dh);

The	multiplication ”b * mob”	requires writing the result vector to	memory before doing the next operation

Completely change assembly approach to	use local AD
• Meaning:	only handle	fixed number of local derivatives	for	each variable
• Much better cache performance
• Matrix	assembly is	separate
• Clever trick	to	get derivatives	for	fluxes (that depend on two cells)
• Was gradually prototyped by	A.	Lauser for	2-3	years before switching

Results:
• Norne	case	~1.7	times	Eclipse runtime (~1.1	by	now)

Consequences:
• Assembly	no longer	resembles MRST
• More	complex code structure to	understand	for	programmers

52

Bottleneck 4	– addressed

Technology	for	a	better	society

