
POWARE

Multithreading with Tasklets

Andreas Lauser

January 25, 2019



POWARE
Overview

1 Parallel Computing

2 Multi-Threading in OPM



POWARE
Overview

1 Parallel Computing

2 Multi-Threading in OPM



POWARE
Sequential Computing: (Deterministic) Turing Machine

Model: Mathematician
Brain with finite amount of memory
Pencil, Rubber & Infinite amount of scratch Paper
Capacity to run simple Instructions
List of Instructions

M = 〈Q, Γ, b,Σ, δ, q0,F 〉

Q Finite sets of states
Γ Alphabet
b Blank character

Σ ⊆ Γ \ {b} Input symbols
q0 Initial state

δ : Q × Γ→ Q × Γ× {L,R} Transition relation
F ⊆ Q Final states



POWARE
Sequential Computing: (Deterministic) Turing Machine

Model: Mathematician
Brain with finite amount of memory
Pencil, Rubber & Infinite amount of scratch Paper
Capacity to run simple Instructions
List of Instructions

M = 〈Q, Γ, b,Σ, δ, q0,F 〉

Q Finite sets of states
Γ Alphabet
b Blank character

Σ ⊆ Γ \ {b} Input symbols
q0 Initial state

δ : Q × Γ→ Q × Γ× {L,R} Transition relation
F ⊆ Q Final states



POWARE
Parallel Computing

Model: Group of Mathematicians
Can talk to each other
Prefer to work on their own

Communication is relatively inefficient

Either each gets an own sheet of paper or all
work on the same sheet



POWARE
Processes and Threads

Process: Each mathematician gets a separate
pile of scratch paper (dedicated main memory
region)
Thread: All mathematicians edit the same pile of
scratch paper (shared main memory region)
Process model generally requires more explicit
(messages) but less implicit communication
(locks, semaphores, etc.) for synchronization

Generally assumed to be slower than doing the
same work using the threaded approach
Grain of salt: Milage may vary; modern CPUs are
complex beasts

Threading model quickly leads to conflicting edits
of the shared paper (race conditions)

Typically easily to do and very hard to find



POWARE
Race Conditions

Sometimes the outcome of the computation
depends on the precise timing of computation
Consider two threads both running
a = 1;a = a + 2
Possible results: a = 3 and a = 5
Solution: Introduce critical sections via
synchronization primitives

Lock/Mutex: The first applicant gets in
Semaphore: A given number of threads may
enter the critical section
Condition Variables: A critical section can only be
entered if a given predicate is fulfilled



POWARE
Overview

1 Parallel Computing

2 Multi-Threading in OPM



POWARE
Tasklets

Tasklet: Work that can be deferred and run in a
different thread

Implemented on top of C++-2011 primitives
Specified via simple callback function/lambda . . .
. . . or object derived from
Ewoms::TaskletInterface which can be
used to hold additional scaffolding

Thread pool: Multiple “day laborer” threads
queueing to work on the next tasklet. Work is
distributed by the Ewoms::TaskletRunner
class.
Barrier: All tasklets must be finished before
continuing



POWARE
Tasklets Example

Ewoms::TaskletRunner runner(/*numWorkers=*/3);

auto fn =
[&runner]()

{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
std::cout << "I am worker " << runner.workerThreadIndex() << std::endl;

};
for (int i = 0; i < 5; ++ i)

runner.dispatchFunction(fn);
runner.barrier();
std::cout << "I am the main thread" << std::endl;



POWARE
OpenMP

Mechanism to easily parallelize “most” workloads
Available for C/C++ and FORTRAN
Requires compiler support; needs to be explictly
enabled using compiler flags
Does not take advantage of “modern” C++ >=
2011 constructs
Well established:

First version of the standard is from 1997
Supported by all common compilers: GCC,
Clang, VC++, ICC, . . .



POWARE
OpenMP Example

omp_set_num_threads(/*numWorkers=*/3);

#pragma omp parallel for
for (int i = 0; i < 5; ++ i) {

std::this_thread::sleep_for(std::chrono::milliseconds(50));
std::cout << "I am worker " << omp_get_thread_num() << std::endl;

};

// barrier is implicit (mandatory?). explicit: #pragma omp barrier

std::cout << "I am the main thread" << std::endl;



POWARE
Tasklets vs OpenMP

OpenMP:

Direct parallelization of “simple” loops

Build-in schedules (static, dynamic, . . . )

Established
Requires special compiler support and explicit
enabling

Single thread pool

Tasklets:
No special compiler support required: Build on top of
standard C++-2011 primitives

All synchronization between tasklets has to be explicit

Arbitrary number of thread pools easy to implement

More flexibility w.r.t. task handling (e.g., setting CPU
affinity)



POWARE
Asynchronous Output

Writing to harddisk is slow
In particular on some network file systems and on
Windows

Computer can do useful work while waiting for I/O
to finish
Approach: Extract data to be written in main
thread, hand off the writing to a tasklet in a
dedicated thread pool
Currently VTK and ECL data can be written
asynchronously



POWARE
Multi-Threaded Linearization

Approach:

Only linearization thread-parallelized: Problems with
ordering dependent preconditioners for linear solvers

Each thread loops over the grid, skips the elements
which are taken by other threads

Ewoms::ThreadedElementIterator

Linearize the localized solution for the current element

Update the global residual and its Jacobian using the
local linearization. Use critical sections to avoid race
conditions when accessing global objects

Currently implemented using OpenMP

OpenMP used for historical reasons
Feels a bit shoehorned
Patch to transition to tasklets available as pull
request



POWARE
Summary

Process-level and Thread-level parallelization
Thread-level parallelization requires less message passing, but quickly leads
to race conditions
On multi-core desktop-class computers, thread-level parallelization can be
made at least as performant as process-level parallelization
In OPM, output writing and linearization is multi-threaded

Tasklets used for asynchronos output writing and OpenMP for linearization
Linear solvers not easily thread-parallelizable

Ordering dependence of practically relevant preconditioners



POWARE
Outlook

Single mechanism for thread-parallelization is desireable
Multiple independent thread-pools required, i.e., OpenMP not feasible



POWARE

That’s it. Questions?!


