
Performance acceleration 
for CO2 simulations

Atgeirr Flø Rasmussen, Kai Bao
Halvor Møll Nilsen, Bård Skaflestad

1



Introduction and example

2



Understanding OPM performance

3

Read deck, setup and initialization Newton loop

Assembly and linearization

Converged?

Solve linear system

Update state variables

Iteration > limit?

Start timestep

Timestep successful
Output and report

Increase t, find new △t 

Timestep failed
Reset t, reduce △t

Yes

Yes
No

No

(ignoring reaching the end of the simulation time)



What causes performance loss?

4

Read deck, setup and initialization
Newton loop

Assembly and linearization

Converged?

Solve linear system

Update state variables

Iteration > limit?

Start timestep

Timestep successful
Output and report

Increase t, find new △t 

Timestep failed
Reset t, reduce △t

Yes

Yes
No

No

What takes the most time?
• Assembly of residual and Jacobian
• Solving linear system

What causes wasted time (”Failed”)?
• Failed Newton solves
• Also failed linear solves (not in flow chart)
Leads to timestep cut!
→ Effort already done on timestep is wasted



5

What can help? Obscure options?

Read deck, setup and initialization
Newton loop

Assembly and linearization

Converged?

Solve linear system

Update state variables

Iteration > limit?

Start timestep

Timestep successful
Output and report

Increase t, find new △t 

Timestep failed
Reset t, reduce △t

Yes

Yes
No

No

In this particular case, the option
--linear-solver-ignore-convergence-failure=true



6

What can help? Change linear solver?

Read deck, setup and initialization
Newton loop

Assembly and linearization

Converged?

Solve linear system

Update state variables

Iteration > limit?

Start timestep

Timestep successful
Output and report

Increase t, find new △t 

Timestep failed
Reset t, reduce △t

Yes

Yes
No

No

Using the CPR linear solver
--linear-solver=cpr



Concrete tips

7



Tip 1: Run OPM Flow in parallel!

Parallel runs are NOT achieved up by modifying the deck! Instead, use mpirun:

Are there pitfalls?
• Can get different number of iterations

• … which leads to different timestepping
• … which might lead to different behaviors (esp. for prediction)

• But: sensitivity to timestep sizes is not unique to parallel vs. serial
• Most developers run mostly in parallel

8

> flow MYCASE.DATA
> mpirun -np 8 flow MYCASE.DATA

Serial run
Parallel run with 8 processes



Parallel scalability: desktop

SPE11 Case C
376700 active cells, 1000 years simulation time, two threads per process, Intel i9-7940X CPU @ 3.10GHz

9



Parallel scalability: desktop

SPE11 Case C
376700 active cells, 1000 years simulation time, two threads per process, Intel i9-7940X CPU @ 3.10GHz

10



Parallel scalability: HPC

Refined Sleipner-derived case
18M active cells, 20 years simulation time, two threads per process, Karolina cluster (CZ), 128 cores/node

11

Conclusion:
Scaling can vary significantly with 
hardware and simulation case, but it 
is usually worth it to run in parallel!



Tip 2: Use faster linear solvers!

CPR is activated with ”CPR” deck keyword, or on command line:
--linear-solver=cpr

12



Linear solver advanced tips

Full description of linear solver in *.DBG output
• JSON Format
• Save to “mylinearsolversetup.json”, and you can 

modify tons of parameters!
• (Must end with .json for Flow to accept it)

• Run with command line:
--linear-solver=mylinearsolversetup.json

Note: “CPR” option is actually the “CPRW” 
method recently published.

13



Tip 3: Use fast linearization and assembly!

Improvement for blackoil/CO2STORE in 2022.10, improvement for THERMAL coming in 2023.10.

(So, tip is more precisely: Use a recent version of OPM Flow!)

Comparison on thermal case variant:

14



Tip 4: Use tuning options!

Flow by default does NOT respect the TUNING keyword
• By using --enable-tuning=true you make Flow use it (first record only)

Nonlinear convergence options can be changed on the command line: 
tolerance-cnv, tolerance-mb, tolerance-cnv-relaxed, relaxed-
max-pv-fraction, etc.
• See OPM Flow manual for documentation
• Beware! Weakening tolerances may give wrong solution!

For more information about your run:
--output-extra-convergence-info=steps,iterations

• Will output *.INFOITER and *.INFOSTEP files with iterations, timing etc.

15



Obscure tuning options

When you know that linear solver problems are frequent:
--linear-solver-ignore-convergence-failure=true

• Will try to continue Newton iterations even when linear solver cannot
converge fully.

When you think that “this is not complicated, why is it slow”:
--ecl-enable-drift-compensation=false

• Beware, this can kill or rescue your runtime!

16



Secret options not for you…

NDEBUG
• By default, NDEBUG is not set for OPM Flow, so assert()s are left in
• Turn on by setting option WITH_NDEBUG in cmake when compiling Flow
• You may get up to 10% - 15% speed-up (but less security net)

Use --help-all to see hidden options (including obsolete ones)

Compile experimental versions of OPM Flow
• See for example https://github.com/hnil/opm-flowexperimental

17



“Tip 4.999”: new nonlinear solvers!

Nonlinear domain decomposition method
• Activate using --nonlinear-solver=nldd
• Not quite mature yet: may crash!
• Just in: works in parallel with MPI (mostly)
• Many options for tuning and setup

• We are looking for good defaults

18

Timing below:
Norne with 6 MPI ranks 
using Newton (orange) 
or NLDD (purple)



Future improvements

• Faster property evaluation!
• Shows up as part of “update” time in end-of-run summary

• Improved timestepping logic and algorithms

19



Acknowledgement

Work done with financial support from

Thanks for listening!

20


