"l OPEN POROUS MEDIA

Performance acceleration
for CO2 simulations

Atgeirr Flg Rasmussen, Kai Bao
Halvor Mgll Nilsen, Bard Skaflestad

SINTEF



"l OPEN POROUS MEDIA

Introduction and example



"l OPEN POROUS MEDIA

Understanding OPM performance ‘"OPM

<Read deck, setup and initializatiorD
Newton loop

< Start timestep > Assembly and linearization

v

Converged?

Timestep successful
Output and report

Increase t, find new At , .
Iteration > limit?

4 No

Solve linear system

!

Update state variables

(ignoring reaching the end of the simulation time)



What causes performance loss?

Newton loop

Timestep successful
Output and report
Increase t, find new At

What causes wasted time (”Failed”)?
* Failed Newton solves

* Also failed linear solves (not in flow chart)
Leads to timestep cut!

- Effort already done on timestep is wasted

»mOpPM

"l OPEN POROUS MEDIA

What takes the most time?
* Assembly of residual and Jacobian
* Solving linear system

End of simulation

Number of MPI processes:
Threads per MPI process:
Number of timesteps:
Total time (seconds):
Solver time (seconds):
Assembly time (seconds):

‘ assembly (seconds):

: 259.6; 42.5%)
: 10.3; 43.8%)

Linear solve tImé eToTaP) ¢ : 3766.3; 58.8%)
Linear setup (seconds): 280 Failed: 133.7; 47.7%)
Update time (seconds): 472.65 JFailed: 209.4; 44.3%)
Pre econds) : 106.13 fFailed: 10.0; 9.4%)
Output write time (seconds): 9>
Overall Linearizations: 1579 Failed: 671; 42.5%)
Overall Newton Iterations: 1410 Failed: 671; 47.6%)
Overall Linear Iterations: 43554 Failed: 25942; 59.6%)




? ions?
What can help? Obscure options: "= OPM

"l OPEN POROUS MEDIA

Newton loop

Timestep successful

Output and report

Increase t, find new At

Number of MPI processes:
Threads per MPI process:
Number of timesteps:
Total time (seconds):
Solver time (seconds):

End of simulagion

Assembly time (seconds): 42.4; 14.0%)
= assembly (seconds): 1.9; 16.0%)
Linear solve time oTre 525.0; 10.4%)
H H H Linear setup (seconds): 5 Failed: 21.3; 15.2%)
In th|S partICUIar Casel the Optlon Update time (seconds): 259.25 JFailed: 49.8; 19.2%)
--Tinear-solver-ignore-convergence-failure=true seconds) : 22.55 [Failed: 0.2; 1.0%)
Output write time (seconds
Overall Linearizations: 768 Failed: 105; 13.7%)
Overall Newton Iterations: 695 Failed: 105; 15.1%)
Overall Linear Iterations: 35058 Failed: 3557; 10.1%)




What can help? Change linear solver? -

"l OPEN POROUS MEDIA

Newton loop

Timestep successful
Output and report
Increase t, find new At

End of simulatgion

Number of MPI processes:
Threads per MPI process:
Number of timesteps:
Total time (seconds):
Solver time (seconds):

Assembly time (seconds): 0.0; 0.0%)

assembly (seconds): 0.0; 0.0%)

Linear solve time SCOTITS 0.0; 0.0%)

H H Linear setup (seconds): 109.47 0.0; 0.0%)

USIng the CPR Ilnear SOIVer Update time (seconds): 54.49 0.0; 0.0%)

--Tinear-solver=cpr seconds) : 6.55 0.0; 0.0%)
Output write time (seconds): Z.07

Overall Linearizations: 159 0; 0.0%)

Overall Newton Iterations: 138 0; 0.0%)

Overall Linear Iterations: 74 0; 0.0%)




"l OPEN POROUS MEDIA

Concrete tips



Tip 1: Run OPM Flow in parallel! *"OPM

"l OPEN POROUS MEDIA

Parallel runs are NOT achieved up by modifying the deck! Instead, use mpirun:

> flow MYCASE.DATA Serial run
> mpirun -np 8 flow MYCASE.DATA Parallel run with 8 processes

Are there pitfalls?

* Can get different number of iterations

* ... which leads to different timestepping
... which might lead to different behaviors (esp. for prediction)

* But: sensitivity to timestep sizes is not unique to parallel vs. serial

* Most developers run mostly in parallel



Parallel scalability: desktop ‘"OPM

SPE11 Case C

376700 active cells, 1000 years simulation time, two threads per process, Intel i9-7940X CPU @ 3.10GHz

Scalability test for OPM-flow

1200 -
1141.2

=
0o o
o o
o o

696.8
600 |

400 |

Total Time (seconds)

312.5
200

1 2 4 8
Number of Processes



Parallel scalability: desktop =OPM

SPE11 Case C

376700 active cells, 1000 years simulation time, two threads per process, Intel i9-7940X CPU @ 3.10GHz

Scalability test for OPM-flow
141.2 ——OPM-flow

103
M
©
C
(@]
@)
Q
u
()]
£ 312.5
I_
r_u
ojd
(@]
|_

42.7
2 \ !
10
1 2 4 8

Number of Processes

10



Parallel scalability: HPC *"OPM

"l OPEN POROUS MEDIA

Refined Sleipner-derived case
18M active cells, 20 years simulation time, two threads per process, Karolina cluster (CZ), 128 cores/node

128 —%— Refined Sleipner runtime

64

Conclusion:

Scaling can vary significantly with
hardware and simulation case, but it
is usually worth it to run in parallel!

32

16

Walltime [minutes]

128 256 512 1024 2048
CPU Cores



Tip 2: Use faster linear solvers! *"OPM

"l OPEN POROUS MEDIA

CPR is activated with "CPR” deck keyword, or on command line:

--1linear-solver=cpr

Total Tlme(default linear solver vs CPR Linear Solve Time (default linear solver vs CPR
700 F
—s—default linear solver . —s—default linear solver
1200+ ——CPR %) —+—CPR

_ T 600
% 1000 8

. Q 500
; o

& 800 2 200
O] =

£ 600 © 300
- :

© 400} Y200
© ©
= ()

200t €100
—

o
o

oo
H -
N
o

1 2 4 4
Number of Processes Number of Processes

12



Linear solver advanced tips

{

"maxiter":

"20",

"tol": "0.0050000000000000001",
"verbosity": "0",

"solver":

"precondi
"type

"bicgstab",
tioner": {
" tcprw",

"use_well _weights": "false",
"add_wells": "true",
"weight type": "trueimpes",

"fines

moother": {
type": "ParOverILUO",

"relaxation": "1'

}

4
"verbosity": "0",
"coar

sesolver": {

maxiter": "1",

tol": "0.10000000000000001",
solver": "loopsolver",
verbosity": "0",

"preconditioner": {

"type": "amg",

"alpha": "0.33333333333300003",

"relaxation": "1",

"iterations": "1",
"coarsenTarget": "1200",
"pre_smooth": "1",
"post_smooth": "1"
"beta": "0"

"smoother": "ILUO"
"verbosity": "0",
"maxlevel": "15",
"skip_isolated": "0
"accumulate": "1",
"prolongationdamping 1
"maxdistance": "2"
cccccccccc tivity": "15
"maxaggsi "6",
"minaggsi 4"

=OPM

"l OPEN POROUS MEDIA

Full description of linear solver in *.DBG output
* JSON Format

* Save to “mylinearsolversetup.json”, and you can
modify tons of parameters!
e (Must end with .json for Flow to accept it)

e Run with command line:

--1inear-solver=mylinearsolversetup.json

Note: “CPR” option is actually the “CPRW”
method recently published.



Tip 3: Use fast linearization and assembly! =OPM

"l OPEN POROUS MEDIA

Improvement for blackoil/CO2STORE in 2022.10, improvement for THERMAL coming in 2023.10.

(So, tip is more precisely: Use a recent version of OPM Flow!)

Comparison on thermal case variant:

Total Time(master vs release2023.4) Assembly Time(master vs release2023.4)
1500 + ——master 1 500+ —s—master
——release2023.4 Ty —+—release2023.4
— -O
5 S 400
c o
S A
91000 L
n o 300
o £
|_
-
= >
= 2200
w© 500 =
= Q
2 “ 100
< =
O | I I I
O I I I I
1 2 4 8 1 2 4 8

Number of Processes
Number of Processes

14



Tip 4: Use tuning options! >=OPM
Flow by default does NOT respect the TUNING keyword
* By using --enable-tuning=true you make Flow use it (first record only)

Nonlinear convergence options can be changed on the command line:
tolerance-cnv, tolerance-mb, tolerance-cnv-relaxed, relaxed-

max-pv-fraction, etc.
* See OPM Flow manual for documentation
* Beware! Weakening tolerances may give wrong solution!

For more information about your run: _ _
--output-extra-convergence-info=steps,iterations

* Will output *.INFOITER and *.INFOSTEP files with iterations, timing etc.



Obscure tuning options ‘"OPM

OOOOOOOOOOOOOOO

When you know that linear solver problems are frequent:
--11near-solver-ignore-convergence-failure=true

* Will try to continue Newton iterations even when linear solver cannot
converge fully.

When you think that “this is not complicated, why is it slow”:
--ecl-enable-drift-compensation=false

* Beware, this can kill or rescue your runtime!



Secret options not for you... ‘WOPM

"l OPEN POROUS MEDIA

NDEBUG

* By default, NDEBUG is not set for OPM Flow, so assert()s are left in
* Turn on by setting option WITH_NDEBUG in cmake when compiling Flow
* You may get up to 10% - 15% speed-up (but less security net)

Use --help-all to see hidden options (including obsolete ones)

Compile experimental versions of OPM Flow
 See for example https://github.com/hnil/opm-flowexperimental



“Tip 4.999”: new nonlinear solvers! =OPM

Nonlinear domain decomposition method - _
Timing below:

* Activate using --nonlinear-solver=nldd Norne with 6 MPI ranks
* Not quite mature yet: may crash!
* Just in: works in parallel with MPI (mostly)

"+ Many options for tuning and setup j—
* We are looking for good defaults | L

using Newton (orange)
or NLDD (purple)




Future improvements *"OPM

OOOOOOOOOOOOOOO

 Faster property evaluation!
* Shows up as part of “update” time in end-of-run summary

* Improved timestepping logic and algorithms



Acknowledgement ‘"OPM

OOOOOOOOOOOOOOO

Work done with financial support from

equinor Y% CLIiMIT

Thanks for listening!

20



