Examples of OPM-Flow usage at TNO

OPM Summit 2024

Negar Khoshnevis

April 9-10, 2024
Outline

• LGR test case

• Groningen case

• Applications at TNO
 • High-temperature seasonal heat storage (HT-ATES)
 • CO$_2$ storage in aquifers
 • Seismicity effect of depletion in aquifers

• Demand for new features at TNO
 • Thermal-phase change
 • H$_2$ storage and bio/geochemistry
 • Fractured reservoirs: dual-poro / dual-perm
LGR test case
LGR test case

SPE1

DX
300*1000 /
DY
300*1000 /
DZ
100*50 100*50 100*50 /

PERMX
100*500 100*50 100*200 /
PERMY
100*500 100*50 100*200 /
PERMZ
100*500 100*50 100*200 /

CARFIN
NAME I1 I2 J1 J2 K1 K2 NX NY NZ
'LGR1' 5 6 5 6 1 3 6 6 9 /
ENDFIN

CARFIN
NAME I1 I2 J1 J2 K1 K2 NX NY NZ
'LGR2' 8 9 8 9 1 3 6 6 9 /
ENDFIN
LGR test case

- **Validation of transmissibility values:**
 - Reporting values calculated by ref. simulator, comparing with values internally calculated in OPM by Antonella (incl. unit conversion)
 - Identifying need for correction factors (“reverse engineering”)
 - LGR-LGR transmissibilities:

<table>
<thead>
<tr>
<th>index</th>
<th>dx</th>
<th>dy</th>
<th>depth</th>
<th>permz</th>
<th>NTG</th>
<th>dz</th>
<th>DHS</th>
<th>DVS</th>
<th>DIPC</th>
<th>B</th>
<th>A</th>
<th>TransX(CPB)</th>
<th>TRANX(ft3)-Ar (CPB/D/PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tranx</td>
<td></td>
<td>1,87716</td>
<td>1,76873E-11</td>
</tr>
<tr>
<td>local</td>
<td>45,1</td>
<td>333,333</td>
<td>8333,33</td>
<td>500</td>
<td>0,333333</td>
<td>20</td>
<td>44444,4</td>
<td>277,8889</td>
<td>0,999375141</td>
<td>1,333333333</td>
<td>2222,222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45,1</td>
<td>333,333</td>
<td>8333,33</td>
<td>500</td>
<td>0,333333</td>
<td>6,666667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- LGR-global transmissibilities:

<table>
<thead>
<tr>
<th>index</th>
<th>dx</th>
<th>dy</th>
<th>depth</th>
<th>permz</th>
<th>NTG</th>
<th>dz</th>
<th>A</th>
<th>B</th>
<th>TRANz(CPB/D)</th>
<th>TRANz(ft3)-Ar (CPB/D/PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tranz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,06066</td>
<td>1174,012923</td>
</tr>
<tr>
<td>local</td>
<td>6,1,4</td>
<td>333,33</td>
<td>8350</td>
<td>50</td>
<td>1</td>
<td>10</td>
<td>111109,3</td>
<td>0,10666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local</td>
<td>6,1,3</td>
<td>333,33</td>
<td>8341,67</td>
<td>500</td>
<td>1</td>
<td>6,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram: Reference simulator
LGR test case

<table>
<thead>
<tr>
<th>Global Grid</th>
<th>Local Grid</th>
<th>Ref simulator (CPB/D/PS)</th>
<th>Ref simulator (m³) OPM(m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TranX</td>
<td>4 5 1</td>
<td>1 1 1</td>
<td>1,87833328 5,0130E-13 2,0054E-13</td>
</tr>
<tr>
<td>TranX</td>
<td>7 5 1</td>
<td>6 1 1</td>
<td>1,87833328 5,0130E-13 5,0136E-13</td>
</tr>
<tr>
<td>TranX</td>
<td>5 7 1</td>
<td>1 6 1</td>
<td>1,87833328 5,0130E-13 5,0136E-13</td>
</tr>
<tr>
<td>TranX</td>
<td>6 4 1</td>
<td>6 1 1</td>
<td>1,87833328 5,0130E-13 2,0054E-13</td>
</tr>
<tr>
<td>TranX</td>
<td>4 5 2</td>
<td>1 1 4</td>
<td>0,28174999 7,5196E-14 3,0081E-14</td>
</tr>
<tr>
<td>TranX</td>
<td>7 5 2</td>
<td>6 1 4</td>
<td>0,28174999 7,5196E-14 7,5204E-14</td>
</tr>
<tr>
<td>TranX</td>
<td>7 6 3</td>
<td>6 6 9</td>
<td>1,87833328 5,0130E-13 5,0136E-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Grid</th>
<th>Local Grid</th>
<th>Ref simulator (CPB/D/PS)</th>
<th>Ref simulator (m³) OPM(m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TranX</td>
<td>1 1 1</td>
<td>2 1 1</td>
<td>3,7567 1,0026E-12 1,0027E-12</td>
</tr>
<tr>
<td>TranX</td>
<td>1 1 1</td>
<td>6 5 1</td>
<td>9391,7 2,5065E-09 2,5068E-09</td>
</tr>
<tr>
<td>TranX</td>
<td>1 1 4</td>
<td>1 1 3</td>
<td>1174 3,1333E-10 3,1335E-10</td>
</tr>
<tr>
<td>TranX</td>
<td>1 1 4</td>
<td>1 1 5</td>
<td>626,11 1,6707E-10 1,6712E-10</td>
</tr>
<tr>
<td>TranX</td>
<td>1 1 4</td>
<td>2 1 4</td>
<td>0,5635 1,5039E-13 1,5041E-13</td>
</tr>
<tr>
<td>TranX</td>
<td>1 1 9</td>
<td>1 1 8</td>
<td>1502,7 4,0105E-10 4,0109E-10</td>
</tr>
</tbody>
</table>

Notes:

- **Comparison of transmissibilities**
 - OPM-Flow vs. reference simulator
 - Local-local transmissibilities are in agreement
 - Mismatch in local-global X- and Y- transmissibilities (by same factor) → correction needed

![Image of a 3D model with grid and values]
LGR test case

Comparison of gas saturation distribution:

Reference simulator

OPM
LGR test case

• Adjusting test case:
 • Original case shows numerical artifacts (mobility of inject gas varies significantly based on vertical resolution of grid)
Groningen test case
Status large-scale test case

• **Approach:**
 • Build multi-million grid cell reservoir simulation model based on publicly available Groningen dataset (released by NAM / Shell)

• **Exporting static model:**
 • Two static models in Petrel: with 18 million and 38 million grid cells
 • Field extent: 40 × 50 km, gas column ~444 m
 • Average grid size: 100 × 100 × 5 m
 • 665 faults
 • 10 different GWC’s

• **Building dynamic model (on-going):**
 • Add regions (EQLNUM, PVNUM, and SATNUM)
 • Add 4 aquifers
 • Add PROPS
 • Add wells location, SCHEDULE and history of production
 • 300+ wells (gas and water producers)
Applications of OPM-Flow at TNO
Applications at TNO

High-temperature aquifer thermal energy storage (HT-ATES)
Temperature profiles HT-ATES

OPM-Flow vs. reference thermal simulator

Orange color: Ref. simulator
Temperature changes in grid cells – warm well

Orange color: Ref. simulator
Temperature changes in grid cells – cold well

50, 75, 6

51, 75, 6

OPM Summit—April 9-10, 2024
Reference thermal simulator vs. Jutul (Olav)
Applications at TNO

CO₂ storage in Dutch offshore aquifers: capacity study

- CO2STORE
- Dissolution trapping
- Dry-out effect
- Residual trapping

CO$_2$ distribution

Gas saturation after 20 years of injection

FWCD: CO$_2$ dissolved in water phase
FWIPG: Water in gas phase
FGCDM: CO$_2$ dissolved and mobile in gas phase
Applications at TNO

Seismic risk in the southern Lauwerszee Trough aquifer

Initial gas saturation distribution

Initial pressure distribution
Varying pressure boundary conditions

- Gas-water system
- The Groningen field on the east is implemented as a pressure boundary
- Time-varying pressure boundary condition of Groningen implemented via pressure-constrained production wells
Demand for new features at TNO
Thermal-compositional with phase change

CO₂ storage in depleted fields

H₂ storage with bio-/geochemical reactions

- Fully compositional / different cushion gas
- Bacterial activity (Monod type reaction)
- Geo-chemical reactions (in many applications such as H₂ and CO₂ Storage), coupling with PHREEQC / Reaktoro

- Methanogenic archaea:
 \[4H₂ + CO₂ \rightarrow CH₄ + 2H₂O \]
- Sulfate-reducing bacteria:
 \[SO₄^{2-} + 5H₂ \rightarrow H₂S + 4H₂O \]

pyrite to pyrrhotite

\[FeS₂ + H₂ \rightarrow FeS + H₂S \]
Geothermal fractured reservoirs

- Many reservoirs exhibit dual-porosity behaviour, in particular in geothermal production.
- Fractured carbonates like the Californie site in The Netherlands and Balmatt site in Belgium, which are both in the Zeeland Formation of the Carboniferous.
- Magmatic sites like in Iceland and Los Humeros in Mexico
- Enhanced Geothermal Systems like in the Upper Rhine Graben
- Paris basin
- For some applications and conditions, representing the fractured, dual porosity medium as a normal porous medium works well, however this is not true for:
 - Large fracture distance
 - Heterogeneous fracture networks
- In particular this is important to model the distribution of the cold front and the uncertainty, which in turn is crucial for understanding seismicity.
- Progress of cold water front to the producer → prediction of timing of cold water breakthrough
Summary and discussion

• LGR
 • Testing and comparing with the fine grid model

• Groningen field
 • Building large-scale dynamic model for numerical performance benchmark purposes
 • Test with OPM

• Applications
 • Improve thermal simulation in OPM: possible to add energy related keywords to summary? (Energy Injection/Production rate, Energy Injection/Production total)

• Demand for new features
 • Thermal-phase change
 • H₂ storage and bio/geochemistry
 • Fractured reservoirs: dual-poro / dual-perm
 • Also needed by other groups?
Thank you
Questions?

OPM
OPEN POROUS MEDIA
equinor
TNO innovation for life