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Introduction

The first-order finite volume (FV) is the default option in many standard reservoir
simulators, both commercial and open-source.

It is robust.
Easy implementation.
— Suffers from numerical diffusion.

— Incorrect computations of the front position, components concentrations, water
breakthrough, etc.
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Introduction

To reduce the numerical diffusion and increase the accuracy, there are mainly two
options:
> to refine the grid,

» to increase the order of the numerical method.
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Content of the presentation

1. Second-order method with linear programming reconstruction

2. Explore the method's capabilities in a realistic setting.
» accuracy
> verification in the absence of "true” solution
3. Run WAG and CO2 injection scenarios on the realistic test cases:

» a medium-sized realistic reservoir with an unstructured corner point grid
» an openly available Norne field mode
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Build and run

The models and the build instructions are available in the repository
https://github.com/kvashchuka/second-order-opm-tests.

To run a test case with the second-order method, you need to enable certain flags:
./*path_to_the_build_folder_of_opm-simulators*/bin/flow CASE_NAME --enable-
higher-order=1 --enable-local-reconstruction=1 --reconstruction-scheme-id=3

--only-reconstruction-for-solvent-or-polymer=false
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https://github.com/kvashchuka/second-order-opm-tests

First- vs Second-Order FV Method
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First-order FV method

\i — {/\;} if (Vpy™—pug)-n>0

w

)\ZT, otherwise,

Second-order FV method
i = Ly 1 (VAL = pug) -n 20
v LZT, otherwise,

where the linear reconstruction function
has to satisfy the following requirements:

LE/(X) t=Ag +VLig - (X - WEi)>
LE,-(WEJ-) = /\Ej, V(E,', EJ) € 0E;.
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Second-order method with Linear Programming reconstruction

We want to minimize the total gaps between the reconstructed values and the
cell-averaged values at all neighboring cells:

W= S g Le(wg)l

V(E,',Ej)E@E,’
The constraints are the following monotonicity conditions:

min{\g,, )\Ej} < LE,-(WEJ-) < max{Ag,, )\Ej}, V(E;, Ej) € OE;.
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Second-order method with Linear Programming reconstruction

We solve the following LP problem:

max Z sgn(vg;)(wg, — wg,) - VL
V(E;,E})€OE; (3)

subject to Vg, < (wg, —wg) - VLE < vg,
where
Vg = min{0, A\g, — Ag; },
vé'; = max{0, \g, — Ag; }-
The unknown vector x is the gradient of the linear reconstruction

X = [VLXI,,VL),;-I_,VLE_]T.
We use an all-inequality simplex method to solve the LP.

¥

equinor



Norne: homogeneous (top) and heterogeneous (bottom)
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Norne: homogeneous and heterogeneous
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Norne: verification with refined model
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CO; injection on Norne

Figure: Positions of the wells in the Norne CO2 injection scenarios: left for the wells in the
same compartment, middle - wells are separated by a fault, right - injection well in the corner.
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CO; injection on Norne
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Figure: Solvent production rate for the three scenarios of solvent injection on Norne. Ll
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CO, injection on Norne: zoom-in
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Figure: The subplots zoom into the times of solvent arrival for each scenario: (1) Wells in the

same compartment; (2) Wells separated by a fault; (3) Injection well in the corner. ”
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A medium-sized realistic reservoir with an unstructured corner point grid
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Oil and Gas production rate
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Gas wave
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Oil and Gas production rate: zoom-in
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Solvent production rate
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Production rates of water and solvent during the whole simulation on the
right and zoom in on the left
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Conclusions

» Showed that second-order method improves accuracy in front positioning and
reduces smearing.

» Complexity of the reservoir can overshadow the effects gained by using a
higher-order computational method.

» Verified the results with the first-order method on the refined grid, both for the
medium-sized reservoir and the Norne test case.
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