

Running a 101 million cell case in OPM Flow

and the impact of ACROSS on OPM

Kjetil Olsen Lye (SINTEF Digital)

OPM Summit 2024

The simulation

We used this:

to make OPM Flow compute this:

The simulation

We used this:

to make OPM Flow compute this:

The end?

The ACROSS EU Project

HPC, Big Data, and Artificial Intelligence convergent platform [ACROSS]

- 2021 2024
- Workflow centric use of ML and traditional HPC
- SINTEF's role: simulation of CO₂ storage pilot

ACROSS: In-situ processing support in OPM Flow

Damaris has been integrated into OPM Flow, supporting:

- parallel HDF5 output
- in-situ remote ParaView visualization
- Python processing with DASK support

ACROSS: In-situ processing support in OPM Flow

Damaris has been integrated into OPM Flow, supporting:

- parallel HDF5 output
- in-situ remote ParaView visualization
- Python processing with DASK support

ACROSS: In-situ processing support in OPM Flow

Damaris has been integrated into OPM Flow, supporting:

- parallel HDF5 output
- in-situ remote ParaView visualization
- Python processing with DASK support

```
B0,1
```

```
def main(DD):
    # (...)
    pressure = DD['iteration_data']['PRESSURE']['numpy_data']['P0_B0']
    np.savetxt("pressure.txt", pressure)
```

Consequence of Damaris: In-situ learning support

KPI in ACROSS:

Simulate 100M cells for 1000 years.

The Hardware: The Karolina Cluster at IT4I

CPU partition:

- 720x 2x AMD 7H12
- 64 cores/CPU, 2.6 GHz
- 92,160 cores in total
- 256 GB RAM / node

GPU partition:

- 72x 2x AMD 7763
- 64 cores/CPU, 2.45 GHz
- 9,216 cores in total
- 72x 8x NVIDIA A100 GPU
- 576 GPUs in total
- 1024 GB RAM / node

The Hardware: The Karolina Cluster at IT4I

CPU partition:

- 720x 2x AMD 7H12
- 64 cores/CPU, 2.6 GHz
- 92,160 cores in total
- 256 GB RAM / node

GPU partition:

- 72x 2x AMD 7763
- 64 cores/CPU, 2.45 GHz
- 9,216 cores in total
- 72x 8x NVIDIA A100 GPU
- 576 GPUs in total
- 1024 GB RAM / node

The case: SPE11C

We use the SPE11C case with

- Cartesian, $468 \times 466 \times 466$
- First 1000 years equilibrium disabled
- Thermal disabled

Problem: Only 256 GB RAM / node.

Memory usage of OPM Flow as a function of time

Memory usage of without thermal

Problem: Only 256 GB RAM/node. Solution: Disable thermal, run on 32

Problem: Only 256 GB RAM/node. ✓ Problem: Zoltan crashes.

Zoltan crashes at around 32 million Cartesian cells

- Unweighted graph
- Both serial and parallel
- 64-bits support enabled
- Reproducible outside of OPM Flow

- 1. Run OPM Flow to dump graph to file
- 2. Partition said file with serial METIS¹
- Run OPM Flow with partition file from METIS

Zoltan crashes at around 32 million Cartesian cells

- Unweighted graph
- Both serial and parallel
- 64-bits support enabled
- Reproducible outside of OPM Flow

- 1. Run OPM Flow to dump graph to file
- 2. Partition said file with serial METIS¹
- 3. Run OPM Flow with partition file from METIS

¹Takes around 1 minute

Zoltan crashes at around 32 million Cartesian cells

- Unweighted graph
- Both serial and parallel
- 64-bits support enabled
- Reproducible outside of OPM Flow

- 1. Run OPM Flow to dump graph to file
- 2. Partition said file with serial METIS¹
- 3. Run OPM Flow with partition file from METIS

¹Takes around 1 minute

Zoltan crashes at around 32 million Cartesian cells

- Unweighted graph
- Both serial and parallel
- 64-bits support enabled
- Reproducible outside of OPM Flow

- 1. Run OPM Flow to dump graph to file
- 2. Partition said file with serial METIS¹
- 3. Run OPM Flow with partition file from METIS

¹Takes around 1 minute

Problem: Only 256 GB RAM/node. <

Problem: Zoltan crashes.
Solution: Use METIS.

Problem: Only 256 GB RAM/node. Problem: Zoltan crashes. Problem: Segmentation fault.

A segmentation fault appears

int is used liberally within OPM, and

Made an isolated test and fixed overflow in

- opm/grid/cpgpreprocess/preprocess.c
- opm/grid/cpgpreprocess/unique.c

A segmentation fault appears

int is used liberally within OPM, and

Made an isolated test and fixed overflow in

- opm/grid/cpgpreprocess/preprocess.c
- opm/grid/cpgpreprocess/unique.c

A segmentation fault appears

int is used liberally within OPM, and

Made an isolated test and fixed overflow in

- opm/grid/cpgpreprocess/preprocess.c
- opm/grid/cpgpreprocess/unique.c

Problem: Only 256 GB RAM/node. Problem: Zoltan crashes.

Problem: Segmentation fault. ✓ Solution: int overflow fixes.

Run summary


```
End of simulation
Number of MPI processes:
                             1024
Threads per MPI process:
Number of timesteps:
                            10050
Total time (seconds):
                            78264.74
Solver time (seconds):
                            78242,29
Assembly time (seconds):
                             9674.80 (Failed: 3.5: 0.0%)
  Well assembly (seconds):
                                0.00 (Failed: 0.0: 0.0%)
Linear solve time (seconds):52800.33 (Failed: 43.8; 0.1%)
  Linear setup (seconds): 17624.18 (Failed: 13.3: 0.1%)
Update time (seconds):
                             12932.66 (Failed: 4.6: 0.0%)
Pre/post step (seconds): 2194.43 (Failed: 0.1; 0.0%)
Output write time (seconds): 587.14
Overall Linearizations:
                          30377 (Failed: 11: 0.0%)
Overall Newton Iterations: 20330
                                     (Failed: 11: 0.1%)
Overall Linear Iterations: 117635
                                     (Failed: 80: 0.1%)
```

Problem: Only 256 GB RAM/node.
Problem: Zoltan crashes.
Problem: Segmentation fault.
Problem: Output files were corrupt.

Output problems

The workflow for visualizing the results:2

- 1. Load the file with MRST/MATLAB in debug mode
- 2. Dump the data to new, plain data files
- 3. Load said data files in Julia
- 4. Visualize with GLMakie.il

²Done by Olav Møyner @ SINTEF Digital

Problem: Only 256 GB RAM/node. ✓
Problem: Zoltan crashes. ✓
Problem: Segmentation fault. ✓

Problem: Output files were corrupt. ✓ Solution: MRST/MATLAB reading

Conclusions and future work

Conclusions

- We ran a 101 million cell case (90 000 core hours)
- Running large cases in OPM Flow is not trivial

Future work to make running large cases trivial:

- replace int with long long or size_t
- support METIS partitioning
- partition in isolated process
- reduce peak memory usage
- isolate and fix output corruption.

Thank you.

Kjetil Olsen Lye
kjetil.olsen.lye@sintef.no

