
OPM Flow: Scaling Up an Open-Source
Simulator for Industrial Application

SIAM Conference on Mathematical & Computational Issues in the Geosciences
Baton Rouge, October 16 2025

Outline

1. Motivation and introduction

2. Our well model story

3. Our automatic differentiation story

4. User programmability

Image by Hege Skyrseth
(Equinor) via LinkedIn

What would the wells of the Troll field
look like, moved to the surface?

• 2000 km of wells drilled
in the reservoir

• Superimposed on the
city of Bergen

Open Porous Media (OPM)

Collaborative
development

Industrial
relevance

Extensible
and flexible

OPM Flow: An open-source reservoir simulator

Oil/gas, CO2 storage,
geothermal, EOR, etc.

Open source community
centered on GitHub

Used in production by
Equinor and others.

OPM-OP

Main contributors to OPM:

The Open Porous Media initiative started in 2009 aiming to:

• Connect research groups with complementary expertise

• Connect industry and researchers

• Curate open-source software and open data, in open collaboration

OPM Flow capabilities (highlights)

Modeling

• Black-oil model three-phase flow

• Optional thermal model

• Advanced fluid properties and models

• Multisegment well model

• Group controls and networks

• Industry standard input and output

• Comprehensive user manual

Methods

• Finite volume discretization with TPFA

• Couples reservoir and well model

• Fully implicit and coupled solution

• Newton and Nonlinear DD solvers

• Jacobians from automatic differentiation

• Flexible and powerful linear solvers

• MPI parallel scalable to > 1000 cores

What sets OPM Flow apart?

Industrial compatibility

Handles very complex
problems

User focus

Open source

Multiple providers of
improvements and fixes

Fast turnaround for
research results

Uncommon for
commercial

software

Uncommon for
research
software

Scaling up for industry use means...

Provide
support for

users

Control
technical debt

and complexity

Integrate new
research
results

Research inside
operational
simulator

Robustness
and

performance

Handle full
asset model
complexity

Integrate into
industrial
workflows

Developer
infrastructure

Stakeholder alignment

• Stakeholders who provide funding:
strong influence on what will be developed

• Developers and researchers have the merge button:
decide how will it be done

• Frequent communication is key
‒ formal overview meetings (30 minutes per 14 days)
‒ informal task-focused meetings (typically 1-2 per week)
‒ email, support tickets

• Stakeholders actively test and evaluate OPM Flow
‒ See e.g. recent RSC paper:

Reiso, E., et al. 2025. Lessons Learned In Using Open-source Simulation Software On Real Asset Models

Equations, extended black-oil model

Mass conservation for each pseudocomponent 𝛼 (water, oil, gas):
𝜕

𝜕𝑡
𝜙𝐴𝛼 + ∇ ∙ 𝒖𝛼 + 𝑞𝛼 = 0

The accumulation terms 𝐴𝛼 and fluxes 𝒖𝛼 are given by:

𝐴𝛼 = 𝑚𝜙(𝑏𝛼𝑠𝛼 + ෍

𝛽≠𝛼

𝑟𝛼𝛽𝑏𝛽𝑠𝛽)

𝒖𝛼 = 𝑏𝛼𝒗𝛼 + ෍

𝛽≠𝛼

𝑟𝛼𝛽𝑏𝛽𝒗𝛽

The corresponding phase velocities are given by Darcy’s Law:
𝒗𝛼 = −𝜆𝛼𝑲 ∇𝑝𝛼 − 𝜌𝛼𝒈

𝜙: porosity

𝑞𝛼: source term

𝑏𝛼: 𝜌𝛼/𝜌𝛼,ref

𝑠𝛼: saturation

𝑟𝛼𝛽: solution ratio

𝜌𝛼: density

This is where the well flow enters!

Rasmussen, A. F., Sandve, T. H.., Bao, K., et al. 2021.
The Open Porous Media Flow reservoir simulator.

Well modeling 1: source term

Discretized conservation equation for single cell 𝑖:

𝜙𝑖𝑉𝑖
Δ𝑡

𝐴𝛼,𝑖 − 𝐴𝛼,𝑖
0 + ෍

𝑗∈𝐶(𝑖)

𝑢𝛼,𝑖𝑗 + 𝑞𝛼,𝑖 = 0

• Must define 𝑞𝛼,𝑤,𝑖 – the flow of each
component for each well into each cell

• Simplest model: assume these numbers are
given a priori
‒ Used for the SPE11 benchmark to eliminate well

modeling as a factor. Brine density for Case C from the 11th SPE Comparative Solution Project,
101-million cell simulation with OPM Flow using the CO2STORE feature

Well modeling 2: BHP and rate

Bottom Hole Pressure (BHP) model:
𝑞𝛼,𝑤,𝑖 = 𝜆𝛼,𝑖𝑇𝑤,𝑖 𝑝𝑤,bhp + Δ𝑝𝑤,𝑖 − 𝑝𝑖

• Assumes as given:
‒ connection factors 𝑇𝑤,𝑖
‒ a mobility factor 𝜆𝛼,𝑖
‒ bottom hole pressure 𝑝𝑤,bhp
‒ hydrostatic pressure adjustments Δ𝑝𝑤,𝑖

• Gives dynamic behaviour, changing with
cell pressure 𝑝𝑖

• Similar to a Dirichlet pressure boundary
condition

Well rate model:

Define the total flow in a well:

𝑞𝛼,𝑤 = ෍

𝑖∈𝐶(𝑤)

𝑞𝛼,𝑤,𝑖

• Give a priori well rate by well control
equation: 𝑞𝛼,𝑤 = 𝑞𝛼,𝑤
(overbar denoting target value)

• This makes 𝑝𝑤,bhp an unknown quantity
to be solved for.

Well modeling 3: x-flow and multisegment

• Well rate model with fractions.
‒ Add two more unknowns (water fraction

and gas fraction).

‒ Allows modeling cross-flow (fluid flowing
both into and out of the same well).

• Multisegment well model
‒ Well consists of segments, that form a

tree structure.

‒ Same unknowns as before, but now per
segment instead of per well.

‒ Equations for each segment:
mass conservation + pressure

‒ Advanced valve models in well
Multisegment well model, with several branches.

Well modeling 4: THP and VFP

• Wells controlled by tubing head pressure (THP)
‒ Assume given Vertical Flow Performance (VFP) relation for well:

𝑝𝑤,bhp = 𝑓(𝑞𝛼,𝑤 , 𝑓𝑤 , 𝑓𝑔 , 𝑝𝑤,thp)

‒ Now even more nonlinear. Models minimum rate for operability.

‒ The water and gas fractions 𝑓𝑤 , 𝑓𝑔 complicate solution:
depend on inflows 𝑞𝛼,𝑤,𝑖, which depend on 𝑝𝑤,bhp

Some of the wells of the Norne
field and their connected cells

Well modeling 5: constraints and groups

• Well behaviour guided by single control equation:
‒ Bhp controlled: 𝑝𝑤,bhp = 𝑝𝑤,bhp
‒ Rate controlled: 𝑞𝛼,𝑤 = 𝑞𝛼,𝑤
‒ Thp controlled: 𝑝𝑤,bhp = 𝑓(𝑞𝛼,𝑤 , 𝑓𝑤 , 𝑓𝑔 , 𝑝𝑤,thp)

• Typically: multiple constraints given.
‒ The strictest one at any one time becomes the control equation

• Group controls and hierarchical control of wells
‒ Group rate constraints: 𝑞𝛼,𝐺 ≝ σ𝑤∈𝐺 𝑞𝛼,𝑤 = 𝑞𝛼,𝐺
‒ User-defined rate distribution to subordinate wells

‒ New control variants: reinjection, voidage replacement,
gas consumption etc.

‒ How to solve/satisfy these?

Simple example
of well and
group structure

Well modeling 6: network, gas lift

• Network model: dynamic THP pressure constraints on wells
‒ Constraint calculated from top of tree down to wells

‒ Pressure drop given by VFP tables:
𝑝child = 𝑓(𝑞, 𝑓𝑤 , 𝑓𝑔 , 𝑝parent)

‒ Simple to calculate given well flows

‒ However: wells on THP control makes this implicit!

‒ How to solve? Iterations outside the rest?

• Gas lift optimization
‒ Allocate available gas to injection wells optimally

‒ How to solve? Iterations where?

Simple example
of well and
group structure

Well modeling takeaways

• OPM Flow supports many advanced features well.

• Organically growing over a long time period.

Is there a catch?

• Organically grown features are not planned out in advance.

• Contains multiple ideas for how to execute.

• Process produces technical debt that must be dealt with in time.

Takeaways:

• Planning is valuable – knowing where you need to go allows better initial design.

• You may end up needing a new design at some point anyway!

Automatic differentiation version 1

Original design:

• Quantities represented by a value
vector and a jacobian sparse matrix

• Constants are just a value vector

• Operators as sparse matrices

massflux = upwind(b * mob) * trans * dp;

material_balance = pv * dt * (accum – accum0) + ops.div * massflux;

Values Jacobian

Pseudocode, not actual code!

Automatic differentiation version 1

Original design:

• Quantities represented by a value
vector and a jacobian sparse matrix

• Constants are just a value vector

• Operators as sparse matrices

Values Jacobian

Advantages:

• Notation similar to math

• Automatically get both sparsity
structure and derivative values

Disadvantages:

• Slow
‒ creating new sparse matrices every operation
‒ fusing operations is hard

• Tricks to improve performance increased
complexity

Single AD object

Automatic differentiation version 2

New design:

• Quantities represented by a single
scalar and a fixed-size small vector of
derivatives

• Constants are just a scalar

• No operator abstraction,
put blocks into sparse matrix manually

mat_balance[i] = pv * dt * (accum[i] – accum0[i]);
for (j : C(i)) {

 massflux[i, j] = upwind(b[i, j] * mob[i, j]) * trans[i, j] * (p[i] – p[j]);
 mat_balance[i] += massflux[i, j];
 jacobian[j, i] = -massflux[i, j].derivative();
}
residual[i] = mat_balance[i].value();

Values Derivatives Single AD object

Pseudocode, not actual code!

Automatic differentiation version 2

New design:

• Quantities represented by a single
scalar and a fixed-size small vector of
derivatives

• Constants are just a scalar

• No operator abstraction,
put blocks into sparse matrix manually

Values Derivatives Single AD object

Advantages:

• Much faster

• AD class is much simpler

Although not without cost:

• New approach was developed separately

• Making the change merged two different
codes with different style and approach

• Resulting mixed code was functional,
but gained technical debt

Lauser, A., Rasmussen, A. F., Sandve, T. H., et al. 2018.
Local forward-mode automatic differentiation for high
performance parallel pilot-level reservoir simulation

User-controlled programmability

• ACTIONX
‒ Allows user variables and conditionals in the

simulation deck to trigger wide range of actions

• PYACTION
‒ Extends the above to run Python code that can

trigger actions or modify the simulator state

• Python interface
‒ Can run the simulator or parts of it as a Python script

User-controlled programmability

Python interface: lets users run
Flow as a Python script

Example from Lisa Julia Nebel
and Håkon Hægland

User-controlled programmability

• Forces assumptions to change:
‒ well behaviour not fully determined by input

‒ cannot know at the start of simulation which
wells will open and when etc.

‒ state can be modified

‒ must change program flow to adapt to new
possibilities

Start of timestep

Newton iteration

Update well controls

Check convergence

Find broken
constraints

Solve wells

Groups and network

Simplified program flow:

Write output

User-controlled
state changes

Conclusions

• User and stakeholder involvement is key.

• It is hard to maintain both a high pace of new features and a code that is simple.

• Long-term planning will help choosing good designs.
‒ Must still be prepared to reconsider.

• Flexible code is important, flexible developers even more so!

• Having multiple alternatives (MRST, Jutul etc.) makes it easier to get new methods
tested and implemented.

sintef.no/75

sintef.no/75

Thank you for
your attention!

https://www.sintef.no/75/

	Slide 1: OPM Flow: Scaling Up an Open-Source Simulator for Industrial Application
	Slide 2: Outline
	Slide 3
	Slide 4: Open Porous Media (OPM)
	Slide 5: OPM Flow capabilities (highlights)
	Slide 6: What sets OPM Flow apart?
	Slide 7: Scaling up for industry use means...
	Slide 8: Stakeholder alignment
	Slide 9: Equations, extended black-oil model
	Slide 10: Well modeling 1: source term
	Slide 11: Well modeling 2: BHP and rate
	Slide 12: Well modeling 3: x-flow and multisegment
	Slide 13: Well modeling 4: THP and VFP
	Slide 14: Well modeling 5: constraints and groups
	Slide 15: Well modeling 6: network, gas lift
	Slide 16: Well modeling takeaways
	Slide 17: Automatic differentiation version 1
	Slide 18: Automatic differentiation version 1
	Slide 19: Automatic differentiation version 2
	Slide 20: Automatic differentiation version 2
	Slide 21: User-controlled programmability
	Slide 22: User-controlled programmability
	Slide 23: User-controlled programmability
	Slide 24: Conclusions
	Slide 25

