blackoillocalresidualtpfa.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*
4 This file is part of the Open Porous Media project (OPM).
5
6 OPM is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 2 of the License, or
9 (at your option) any later version.
10
11 OPM is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with OPM. If not, see <http://www.gnu.org/licenses/>.
18
19 Consult the COPYING file in the top-level source directory of this
20 module for the precise wording of the license and the list of
21 copyright holders.
22*/
28#ifndef EWOMS_BLACK_OIL_LOCAL_TPFA_RESIDUAL_HH
29#define EWOMS_BLACK_OIL_LOCAL_TPFA_RESIDUAL_HH
30
31#include "blackoilproperties.hh"
42#include <opm/material/fluidstates/BlackOilFluidState.hpp>
43#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
44#include <opm/input/eclipse/Schedule/BCProp.hpp>
45
46namespace Opm {
52template <class TypeTag>
53class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLocalResidual>
54{
66 using FluidState = typename IntensiveQuantities::FluidState;
67
68 enum { conti0EqIdx = Indices::conti0EqIdx };
69 enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
70 enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
71 enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
72
73 enum { dimWorld = GridView::dimensionworld };
74 enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
75 enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
76 enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
77
78 enum { gasCompIdx = FluidSystem::gasCompIdx };
79 enum { oilCompIdx = FluidSystem::oilCompIdx };
80 enum { waterCompIdx = FluidSystem::waterCompIdx };
81 enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
82
83 static const bool waterEnabled = Indices::waterEnabled;
84 static const bool gasEnabled = Indices::gasEnabled;
85 static const bool oilEnabled = Indices::oilEnabled;
86 static const bool compositionSwitchEnabled = (compositionSwitchIdx >= 0);
87
88 static constexpr bool blackoilConserveSurfaceVolume = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>();
89
90 static constexpr bool enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>();
91 static constexpr bool enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>();
92 static constexpr bool enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>();
93 static constexpr bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
94 static constexpr bool enableFoam = getPropValue<TypeTag, Properties::EnableFoam>();
95 static constexpr bool enableBrine = getPropValue<TypeTag, Properties::EnableBrine>();
96 static constexpr bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
97 static constexpr bool enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>();
98 static constexpr bool enableConvectiveMixing = getPropValue<TypeTag, Properties::EnableConvectiveMixing>();
99 static constexpr bool enableMICP = getPropValue<TypeTag, Properties::EnableMICP>();
100
109 using ConvectiveMixingModuleParam = typename ConvectiveMixingModule::ConvectiveMixingModuleParam;
110
113
114 using Toolbox = MathToolbox<Evaluation>;
115
116public:
117
119 {
120 double trans;
121 double faceArea;
122 double thpres;
123 double dZg;
124 FaceDir::DirEnum faceDir;
125 double Vin;
126 double Vex;
127 double inAlpha;
128 double outAlpha;
131 };
132
134 ConvectiveMixingModuleParam convectiveMixingModuleParam;
135 };
136
140 template <class LhsEval>
141 void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
142 const ElementContext& elemCtx,
143 unsigned dofIdx,
144 unsigned timeIdx) const
145 {
146 const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
147 computeStorage(storage,
148 intQuants);
149 }
150
151 template <class LhsEval>
152 static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
153 const IntensiveQuantities& intQuants)
154 {
155 OPM_TIMEBLOCK_LOCAL(computeStorage);
156 // retrieve the intensive quantities for the SCV at the specified point in time
157 const auto& fs = intQuants.fluidState();
158 storage = 0.0;
159
160 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
161 if (!FluidSystem::phaseIsActive(phaseIdx)) {
162 continue;
163 }
164 unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
165 LhsEval surfaceVolume =
166 Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
167 * Toolbox::template decay<LhsEval>(fs.invB(phaseIdx))
168 * Toolbox::template decay<LhsEval>(intQuants.porosity());
169
170 storage[conti0EqIdx + activeCompIdx] += surfaceVolume;
171
172 // account for dissolved gas
173 if (phaseIdx == oilPhaseIdx && FluidSystem::enableDissolvedGas()) {
174 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
175 storage[conti0EqIdx + activeGasCompIdx] +=
176 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rs())
177 * surfaceVolume;
178 }
179
180 // account for dissolved gas in water
181 if (phaseIdx == waterPhaseIdx && FluidSystem::enableDissolvedGasInWater()) {
182 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
183 storage[conti0EqIdx + activeGasCompIdx] +=
184 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rsw())
185 * surfaceVolume;
186 }
187
188 // account for vaporized oil
189 if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedOil()) {
190 unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
191 storage[conti0EqIdx + activeOilCompIdx] +=
192 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rv())
193 * surfaceVolume;
194 }
195
196 // account for vaporized water
197 if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedWater()) {
198 unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
199 storage[conti0EqIdx + activeWaterCompIdx] +=
200 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rvw())
201 * surfaceVolume;
202 }
203 }
204
205 adaptMassConservationQuantities_(storage, intQuants.pvtRegionIndex());
206
207 // deal with solvents (if present)
208 SolventModule::addStorage(storage, intQuants);
209
210 // deal with zFracton (if present)
211 ExtboModule::addStorage(storage, intQuants);
212
213 // deal with polymer (if present)
214 PolymerModule::addStorage(storage, intQuants);
215
216 // deal with energy (if present)
217 EnergyModule::addStorage(storage, intQuants);
218
219 // deal with foam (if present)
220 FoamModule::addStorage(storage, intQuants);
221
222 // deal with salt (if present)
223 BrineModule::addStorage(storage, intQuants);
224
225 // deal with micp (if present)
226 MICPModule::addStorage(storage, intQuants);
227 }
228
234 static void computeFlux(RateVector& flux,
235 RateVector& darcy,
236 const unsigned globalIndexIn,
237 const unsigned globalIndexEx,
238 const IntensiveQuantities& intQuantsIn,
239 const IntensiveQuantities& intQuantsEx,
240 const ResidualNBInfo& nbInfo,
241 const ModuleParams& moduleParams)
242 {
243 OPM_TIMEBLOCK_LOCAL(computeFlux);
244 flux = 0.0;
245 darcy = 0.0;
246
247 calculateFluxes_(flux,
248 darcy,
249 intQuantsIn,
250 intQuantsEx,
251 globalIndexIn,
252 globalIndexEx,
253 nbInfo,
254 moduleParams);
255 }
256
257 // This function demonstrates compatibility with the ElementContext-based interface.
258 // Actually using it will lead to double work since the element context already contains
259 // fluxes through its stored ExtensiveQuantities.
260 static void computeFlux(RateVector& flux,
261 const ElementContext& elemCtx,
262 unsigned scvfIdx,
263 unsigned timeIdx)
264 {
265 OPM_TIMEBLOCK_LOCAL(computeFlux);
266 assert(timeIdx == 0);
267
268 flux = 0.0;
269 RateVector darcy = 0.0;
270 // need for dary flux calculation
271 const auto& problem = elemCtx.problem();
272 const auto& stencil = elemCtx.stencil(timeIdx);
273 const auto& scvf = stencil.interiorFace(scvfIdx);
274
275 unsigned interiorDofIdx = scvf.interiorIndex();
276 unsigned exteriorDofIdx = scvf.exteriorIndex();
277 assert(interiorDofIdx != exteriorDofIdx);
278
279 // unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
280 // unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
281 Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
282 Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
283 const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
284 const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
285 Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
286 Scalar faceArea = scvf.area();
287 const auto faceDir = faceDirFromDirId(scvf.dirId());
288 Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
289
290 // estimate the gravity correction: for performance reasons we use a simplified
291 // approach for this flux module that assumes that gravity is constant and always
292 // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
293 const Scalar g = problem.gravity()[dimWorld - 1];
294 const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
295 const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
296
297 // this is quite hacky because the dune grid interface does not provide a
298 // cellCenterDepth() method (so we ask the problem to provide it). The "good"
299 // solution would be to take the Z coordinate of the element centroids, but since
300 // ECL seems to like to be inconsistent on that front, it needs to be done like
301 // here...
302 const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
303 const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
304 // the distances from the DOF's depths. (i.e., the additional depth of the
305 // exterior DOF)
306 const Scalar distZ = zIn - zEx;
307 // for thermal harmonic mean of half trans
308 const Scalar inAlpha = problem.thermalHalfTransmissibility(globalIndexIn, globalIndexEx);
309 const Scalar outAlpha = problem.thermalHalfTransmissibility(globalIndexEx, globalIndexIn);
310 const Scalar diffusivity = problem.diffusivity(globalIndexEx, globalIndexIn);
311 const Scalar dispersivity = problem.dispersivity(globalIndexEx, globalIndexIn);
312
313 const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, faceDir, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity};
314
315 calculateFluxes_(flux,
316 darcy,
317 intQuantsIn,
318 intQuantsEx,
319 globalIndexIn,
320 globalIndexEx,
321 res_nbinfo,
322 problem.moduleParams());
323 }
324
325 static void calculateFluxes_(RateVector& flux,
326 RateVector& darcy,
327 const IntensiveQuantities& intQuantsIn,
328 const IntensiveQuantities& intQuantsEx,
329 const unsigned& globalIndexIn,
330 const unsigned& globalIndexEx,
331 const ResidualNBInfo& nbInfo,
332 const ModuleParams& moduleParams)
333 {
334 OPM_TIMEBLOCK_LOCAL(calculateFluxes);
335 const Scalar Vin = nbInfo.Vin;
336 const Scalar Vex = nbInfo.Vex;
337 const Scalar distZg = nbInfo.dZg;
338 const Scalar thpres = nbInfo.thpres;
339 const Scalar trans = nbInfo.trans;
340 const Scalar faceArea = nbInfo.faceArea;
341 FaceDir::DirEnum facedir = nbInfo.faceDir;
342
343 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
344 if (!FluidSystem::phaseIsActive(phaseIdx))
345 continue;
346 // darcy flux calculation
347 short dnIdx;
348 //
349 short upIdx;
350 // fake intices should only be used to get upwind anc compatibility with old functions
351 short interiorDofIdx = 0; // NB
352 short exteriorDofIdx = 1; // NB
353 Evaluation pressureDifference;
354 ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
355 dnIdx,
356 pressureDifference,
357 intQuantsIn,
358 intQuantsEx,
359 phaseIdx, // input
360 interiorDofIdx, // input
361 exteriorDofIdx, // input
362 Vin,
363 Vex,
364 globalIndexIn,
365 globalIndexEx,
366 distZg,
367 thpres,
368 moduleParams);
369
370
371
372 const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
373 unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
374 // Use arithmetic average (more accurate with harmonic, but that requires recomputing the transmissbility)
375 const Evaluation transMult = (intQuantsIn.rockCompTransMultiplier() + Toolbox::value(intQuantsEx.rockCompTransMultiplier()))/2;
376 Evaluation darcyFlux;
377 if (globalUpIndex == globalIndexIn) {
378 darcyFlux = pressureDifference * up.mobility(phaseIdx, facedir) * transMult * (-trans / faceArea);
379 } else {
380 darcyFlux = pressureDifference *
381 (Toolbox::value(up.mobility(phaseIdx, facedir)) * transMult * (-trans / faceArea));
382 }
383
384 unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
385 darcy[conti0EqIdx + activeCompIdx] = darcyFlux.value() * faceArea; // NB! For the FLORES fluxes without derivatives
386
387 unsigned pvtRegionIdx = up.pvtRegionIndex();
388 // if (upIdx == globalFocusDofIdx){
389 if (globalUpIndex == globalIndexIn) {
390 const auto& invB
391 = getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
392 const auto& surfaceVolumeFlux = invB * darcyFlux;
393 evalPhaseFluxes_<Evaluation, Evaluation, FluidState>(
394 flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
395 if constexpr (enableEnergy) {
396 EnergyModule::template addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>(
397 flux, phaseIdx, darcyFlux, up.fluidState());
398 }
399 } else {
400 const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
401 const auto& surfaceVolumeFlux = invB * darcyFlux;
402 evalPhaseFluxes_<Scalar, Evaluation, FluidState>(
403 flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
404 if constexpr (enableEnergy) {
405 EnergyModule::template
406 addPhaseEnthalpyFluxes_<Scalar, Evaluation, FluidState>
407 (flux,phaseIdx,darcyFlux, up.fluidState());
408 }
409 }
410
411 }
412
413 // deal with solvents (if present)
414 static_assert(!enableSolvent, "Relevant computeFlux() method must be implemented for this module before enabling.");
415 // SolventModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
416
417 // deal with zFracton (if present)
418 static_assert(!enableExtbo, "Relevant computeFlux() method must be implemented for this module before enabling.");
419 // ExtboModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
420
421 // deal with polymer (if present)
422 static_assert(!enablePolymer, "Relevant computeFlux() method must be implemented for this module before enabling.");
423 // PolymerModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
424
425 // deal with convective mixing
426 if constexpr(enableConvectiveMixing) {
427 ConvectiveMixingModule::addConvectiveMixingFlux(flux,
428 intQuantsIn,
429 intQuantsEx,
430 globalIndexIn,
431 globalIndexEx,
432 nbInfo.dZg,
433 nbInfo.trans,
434 nbInfo.faceArea,
435 moduleParams.convectiveMixingModuleParam);
436 }
437
438 // deal with energy (if present)
439 if constexpr(enableEnergy){
440 const Scalar inAlpha = nbInfo.inAlpha;
441 const Scalar outAlpha = nbInfo.outAlpha;
442 Evaluation heatFlux;
443 {
444 short interiorDofIdx = 0; // NB
445 short exteriorDofIdx = 1; // NB
446
447 EnergyModule::ExtensiveQuantities::template updateEnergy(heatFlux,
448 interiorDofIdx, // focusDofIndex,
449 interiorDofIdx,
450 exteriorDofIdx,
451 intQuantsIn,
452 intQuantsEx,
453 intQuantsIn.fluidState(),
454 intQuantsEx.fluidState(),
455 inAlpha,
456 outAlpha,
457 faceArea);
458 }
459 EnergyModule::addHeatFlux(flux, heatFlux);
460 }
461 // NB need to be tha last energy call since it does scaling
462 // EnergyModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
463
464 // deal with foam (if present)
465 static_assert(!enableFoam, "Relevant computeFlux() method must be implemented for this module before enabling.");
466 // FoamModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
467
468 // deal with salt (if present)
469 static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
470 // BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
471
472
473
474 // deal with diffusion (if present). opm-models expects per area flux (added in the tmpdiffusivity).
475 if constexpr(enableDiffusion){
476 typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
477 DiffusionModule::ExtensiveQuantities::update(effectiveDiffusionCoefficient, intQuantsIn, intQuantsEx);
478 const Scalar diffusivity = nbInfo.diffusivity;
479 const Scalar tmpdiffusivity = diffusivity / faceArea;
480 DiffusionModule::addDiffusiveFlux(flux,
481 intQuantsIn.fluidState(),
482 intQuantsEx.fluidState(),
483 tmpdiffusivity,
484 effectiveDiffusionCoefficient);
485
486 }
487 // deal with dispersion (if present). opm-models expects per area flux (added in the tmpdispersivity).
488 if constexpr(enableDispersion){
489 typename DispersionModule::ExtensiveQuantities::ScalarArray normVelocityAvg;
490 DispersionModule::ExtensiveQuantities::update(normVelocityAvg, intQuantsIn, intQuantsEx);
491 const Scalar dispersivity = nbInfo.dispersivity;
492 const Scalar tmpdispersivity = dispersivity / faceArea;
493 DispersionModule::addDispersiveFlux(flux,
494 intQuantsIn.fluidState(),
495 intQuantsEx.fluidState(),
496 tmpdispersivity,
497 normVelocityAvg);
498
499 }
500 // deal with micp (if present)
501 static_assert(!enableMICP, "Relevant computeFlux() method must be implemented for this module before enabling.");
502 // MICPModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
503
504 }
505
506 template <class BoundaryConditionData>
507 static void computeBoundaryFlux(RateVector& bdyFlux,
508 const Problem& problem,
509 const BoundaryConditionData& bdyInfo,
510 const IntensiveQuantities& insideIntQuants,
511 unsigned globalSpaceIdx)
512 {
513 if (bdyInfo.type == BCType::NONE) {
514 bdyFlux = 0.0;
515 } else if (bdyInfo.type == BCType::RATE) {
516 computeBoundaryFluxRate(bdyFlux, bdyInfo);
517 } else if (bdyInfo.type == BCType::FREE || bdyInfo.type == BCType::DIRICHLET) {
518 computeBoundaryFluxFree(problem, bdyFlux, bdyInfo, insideIntQuants, globalSpaceIdx);
519 } else if (bdyInfo.type == BCType::THERMAL) {
520 computeBoundaryThermal(problem, bdyFlux, bdyInfo, insideIntQuants, globalSpaceIdx);
521 } else {
522 throw std::logic_error("Unknown boundary condition type " + std::to_string(static_cast<int>(bdyInfo.type)) + " in computeBoundaryFlux()." );
523 }
524 }
525
526 template <class BoundaryConditionData>
527 static void computeBoundaryFluxRate(RateVector& bdyFlux,
528 const BoundaryConditionData& bdyInfo)
529 {
530 bdyFlux.setMassRate(bdyInfo.massRate, bdyInfo.pvtRegionIdx);
531 }
532
533 template <class BoundaryConditionData>
534 static void computeBoundaryFluxFree(const Problem& problem,
535 RateVector& bdyFlux,
536 const BoundaryConditionData& bdyInfo,
537 const IntensiveQuantities& insideIntQuants,
538 unsigned globalSpaceIdx)
539 {
540 OPM_TIMEBLOCK_LOCAL(computeBoundaryFluxFree);
541 std::array<short, numPhases> upIdx;
542 std::array<short, numPhases> dnIdx;
543 std::array<Evaluation, numPhases> volumeFlux;
544 std::array<Evaluation, numPhases> pressureDifference;
545
546 ExtensiveQuantities::calculateBoundaryGradients_(problem,
547 globalSpaceIdx,
548 insideIntQuants,
549 bdyInfo.boundaryFaceIndex,
550 bdyInfo.faceArea,
551 bdyInfo.faceZCoord,
552 bdyInfo.exFluidState,
553 upIdx,
554 dnIdx,
555 volumeFlux,
556 pressureDifference);
557
559 // advective fluxes of all components in all phases
561 bdyFlux = 0.0;
562 for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
563 if (!FluidSystem::phaseIsActive(phaseIdx)) {
564 continue;
565 }
566 const auto& pBoundary = bdyInfo.exFluidState.pressure(phaseIdx);
567 const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
568 const unsigned pvtRegionIdx = insideIntQuants.pvtRegionIndex();
569
570 RateVector tmp(0.0);
571 const auto& darcyFlux = volumeFlux[phaseIdx];
572 // mass conservation
573 if (pBoundary < pInside) {
574 // outflux
575 const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(insideIntQuants.fluidState(), phaseIdx, pvtRegionIdx);
576 Evaluation surfaceVolumeFlux = invB * darcyFlux;
577 evalPhaseFluxes_<Evaluation>(tmp,
578 phaseIdx,
579 insideIntQuants.pvtRegionIndex(),
580 surfaceVolumeFlux,
581 insideIntQuants.fluidState());
582 if constexpr (enableEnergy) {
583 EnergyModule::template
584 addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>
585 (tmp, phaseIdx, darcyFlux, insideIntQuants.fluidState());
586 }
587 } else if (pBoundary > pInside) {
588 // influx
589 using ScalarFluidState = decltype(bdyInfo.exFluidState);
590 const auto& invB = getInvB_<FluidSystem, ScalarFluidState, Scalar>(bdyInfo.exFluidState, phaseIdx, pvtRegionIdx);
591 Evaluation surfaceVolumeFlux = invB * darcyFlux;
592 evalPhaseFluxes_<Scalar>(tmp,
593 phaseIdx,
594 insideIntQuants.pvtRegionIndex(),
595 surfaceVolumeFlux,
596 bdyInfo.exFluidState);
597 if constexpr (enableEnergy) {
598 EnergyModule::template
599 addPhaseEnthalpyFluxes_<Scalar, Evaluation, ScalarFluidState>
600 (tmp,
601 phaseIdx,
602 darcyFlux,
603 bdyInfo.exFluidState);
604 }
605 }
606
607 for (unsigned i = 0; i < tmp.size(); ++i) {
608 bdyFlux[i] += tmp[i];
609 }
610 }
611
612 // conductive heat flux from boundary
613 if constexpr(enableEnergy){
614 Evaluation heatFlux;
615 // avoid overload of functions with same numeber of elements in eclproblem
616 Scalar alpha = problem.eclTransmissibilities().thermalHalfTransBoundary(globalSpaceIdx, bdyInfo.boundaryFaceIndex);
617 unsigned inIdx = 0;//dummy
618 // always calculated with derivatives of this cell
619 EnergyModule::ExtensiveQuantities::template updateEnergyBoundary(heatFlux,
620 insideIntQuants,
621 /*focusDofIndex*/ inIdx,
622 inIdx,
623 alpha,
624 bdyInfo.exFluidState);
625 EnergyModule::addHeatFlux(bdyFlux, heatFlux);
626 }
627
628 static_assert(!enableSolvent, "Relevant treatment of boundary conditions must be implemented before enabling.");
629 static_assert(!enablePolymer, "Relevant treatment of boundary conditions must be implemented before enabling.");
630 static_assert(!enableMICP, "Relevant treatment of boundary conditions must be implemented before enabling.");
631
632 // make sure that the right mass conservation quantities are used
633 adaptMassConservationQuantities_(bdyFlux, insideIntQuants.pvtRegionIndex());
634
635#ifndef NDEBUG
636 for (unsigned i = 0; i < numEq; ++i) {
637 Valgrind::CheckDefined(bdyFlux[i]);
638 }
639 Valgrind::CheckDefined(bdyFlux);
640#endif
641 }
642
643 template <class BoundaryConditionData>
644 static void computeBoundaryThermal(const Problem& problem,
645 RateVector& bdyFlux,
646 const BoundaryConditionData& bdyInfo,
647 const IntensiveQuantities& insideIntQuants,
648 [[maybe_unused]] unsigned globalSpaceIdx)
649 {
650 OPM_TIMEBLOCK_LOCAL(computeBoundaryThermal);
651 // only heat is allowed to flow through this boundary
652 bdyFlux = 0.0;
653
654 // conductive heat flux from boundary
655 if constexpr(enableEnergy){
656 Evaluation heatFlux;
657 // avoid overload of functions with same numeber of elements in eclproblem
658 Scalar alpha = problem.eclTransmissibilities().thermalHalfTransBoundary(globalSpaceIdx, bdyInfo.boundaryFaceIndex);
659 unsigned inIdx = 0;//dummy
660 // always calculated with derivatives of this cell
661 EnergyModule::ExtensiveQuantities::template updateEnergyBoundary(heatFlux,
662 insideIntQuants,
663 /*focusDofIndex*/ inIdx,
664 inIdx,
665 alpha,
666 bdyInfo.exFluidState);
667 EnergyModule::addHeatFlux(bdyFlux, heatFlux);
668 }
669
670#ifndef NDEBUG
671 for (unsigned i = 0; i < numEq; ++i) {
672 Valgrind::CheckDefined(bdyFlux[i]);
673 }
674 Valgrind::CheckDefined(bdyFlux);
675#endif
676 }
677
678 static void computeSource(RateVector& source,
679 const Problem& problem,
680 unsigned globalSpaceIdex,
681 unsigned timeIdx)
682 {
683 OPM_TIMEBLOCK_LOCAL(computeSource);
684 // retrieve the source term intrinsic to the problem
685 problem.source(source, globalSpaceIdex, timeIdx);
686
687 // deal with MICP (if present)
688 // deal with micp (if present)
689 static_assert(!enableMICP, "Relevant addSource() method must be implemented for this module before enabling.");
690 // MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
691
692 // scale the source term of the energy equation
693 if (enableEnergy)
694 source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
695 }
696
697 static void computeSourceDense(RateVector& source,
698 const Problem& problem,
699 unsigned globalSpaceIdex,
700 unsigned timeIdx)
701 {
702 source = 0.0;
703 problem.addToSourceDense(source, globalSpaceIdex, timeIdx);
704
705 // deal with MICP (if present)
706 // deal with micp (if present)
707 static_assert(!enableMICP, "Relevant addSource() method must be implemented for this module before enabling.");
708 // MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
709
710 // scale the source term of the energy equation
711 if (enableEnergy)
712 source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
713 }
714
718 void computeSource(RateVector& source,
719 const ElementContext& elemCtx,
720 unsigned dofIdx,
721 unsigned timeIdx) const
722 {
723 OPM_TIMEBLOCK_LOCAL(computeSource);
724 // retrieve the source term intrinsic to the problem
725 elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
726
727 // deal with MICP (if present)
728 MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
729
730 // scale the source term of the energy equation
731 if constexpr(enableEnergy)
732 source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
733 }
734
735 template <class UpEval, class FluidState>
736 static void evalPhaseFluxes_(RateVector& flux,
737 unsigned phaseIdx,
738 unsigned pvtRegionIdx,
739 const ExtensiveQuantities& extQuants,
740 const FluidState& upFs)
741 {
742
743 const auto& invB = getInvB_<FluidSystem, FluidState, UpEval>(upFs, phaseIdx, pvtRegionIdx);
744 const auto& surfaceVolumeFlux = invB * extQuants.volumeFlux(phaseIdx);
745 evalPhaseFluxes_<UpEval>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, upFs);
746 }
747
752 template <class UpEval, class Eval,class FluidState>
753 static void evalPhaseFluxes_(RateVector& flux,
754 unsigned phaseIdx,
755 unsigned pvtRegionIdx,
756 const Eval& surfaceVolumeFlux,
757 const FluidState& upFs)
758 {
759 unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
760
761 if (blackoilConserveSurfaceVolume)
762 flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux;
763 else
764 flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux*FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
765
766 if (phaseIdx == oilPhaseIdx) {
767 // dissolved gas (in the oil phase).
768 if (FluidSystem::enableDissolvedGas()) {
769 const auto& Rs = BlackOil::getRs_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
770
771 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
772 if (blackoilConserveSurfaceVolume)
773 flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux;
774 else
775 flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
776 }
777 } else if (phaseIdx == waterPhaseIdx) {
778 // dissolved gas (in the water phase).
779 if (FluidSystem::enableDissolvedGasInWater()) {
780 const auto& Rsw = BlackOil::getRsw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
781
782 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
783 if (blackoilConserveSurfaceVolume)
784 flux[conti0EqIdx + activeGasCompIdx] += Rsw*surfaceVolumeFlux;
785 else
786 flux[conti0EqIdx + activeGasCompIdx] += Rsw*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
787 }
788 }
789 else if (phaseIdx == gasPhaseIdx) {
790 // vaporized oil (in the gas phase).
791 if (FluidSystem::enableVaporizedOil()) {
792 const auto& Rv = BlackOil::getRv_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
793
794 unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
795 if (blackoilConserveSurfaceVolume)
796 flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux;
797 else
798 flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux*FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
799 }
800 // vaporized water (in the gas phase).
801 if (FluidSystem::enableVaporizedWater()) {
802 const auto& Rvw = BlackOil::getRvw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
803
804 unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
805 if (blackoilConserveSurfaceVolume)
806 flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux;
807 else
808 flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux*FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
809 }
810 }
811 }
812
824 template <class Scalar>
825 static void adaptMassConservationQuantities_(Dune::FieldVector<Scalar, numEq>& container, unsigned pvtRegionIdx)
826 {
827 if (blackoilConserveSurfaceVolume)
828 return;
829
830 // convert "surface volume" to mass. this is complicated a bit by the fact that
831 // not all phases are necessarily enabled. (we here assume that if a fluid phase
832 // is disabled, its respective "main" component is not considered as well.)
833
834 if (waterEnabled) {
835 unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
836 container[conti0EqIdx + activeWaterCompIdx] *=
837 FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
838 }
839
840 if (gasEnabled) {
841 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
842 container[conti0EqIdx + activeGasCompIdx] *=
843 FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
844 }
845
846 if (oilEnabled) {
847 unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
848 container[conti0EqIdx + activeOilCompIdx] *=
849 FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
850 }
851 }
852
853
854 static FaceDir::DirEnum faceDirFromDirId(const int dirId)
855 {
856 // NNC does not have a direction
857 if (dirId < 0 ) {
858 return FaceDir::DirEnum::Unknown;
859 }
860 return FaceDir::FromIntersectionIndex(dirId);
861 }
862};
863
864} // namespace Opm
865
866#endif
Contains the classes required to extend the black-oil model by brine.
Classes required for dynamic convective mixing.
Classes required for molecular diffusion.
Classes required for mechanical dispersion.
Contains the classes required to extend the black-oil model by energy.
Contains the classes required to extend the black-oil model by solvent component. For details,...
Contains the classes required to extend the black-oil model to include the effects of foam.
Contains the classes required to extend the black-oil model by MICP.
Contains the classes required to extend the black-oil model by polymer.
Declares the properties required by the black oil model.
Contains the classes required to extend the black-oil model by solvents.
Contains the high level supplements required to extend the black oil model by brine.
Definition: blackoilbrinemodules.hh:58
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilbrinemodules.hh:228
Definition: blackoilconvectivemixingmodule.hh:58
Provides the auxiliary methods required for consideration of the diffusion equation.
Definition: blackoildiffusionmodule.hh:48
Provides the auxiliary methods required for consideration of the dispersion equation.
Definition: blackoildispersionmodule.hh:48
Contains the high level supplements required to extend the black oil model by energy.
Definition: blackoilenergymodules.hh:52
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilenergymodules.hh:141
static void addHeatFlux(RateVector &flux, const Evaluation &heatFlux)
Definition: blackoilenergymodules.hh:195
Contains the high level supplements required to extend the black oil model.
Definition: blackoilextbomodules.hh:69
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilextbomodules.hh:320
Contains the high level supplements required to extend the black oil model to include the effects of ...
Definition: blackoilfoammodules.hh:59
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilfoammodules.hh:247
Calculates the local residual of the black oil model.
Definition: blackoillocalresidualtpfa.hh:54
void computeSource(RateVector &source, const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx) const
Calculate the source term of the equation.
Definition: blackoillocalresidualtpfa.hh:718
static void computeBoundaryFlux(RateVector &bdyFlux, const Problem &problem, const BoundaryConditionData &bdyInfo, const IntensiveQuantities &insideIntQuants, unsigned globalSpaceIdx)
Definition: blackoillocalresidualtpfa.hh:507
static void computeBoundaryFluxFree(const Problem &problem, RateVector &bdyFlux, const BoundaryConditionData &bdyInfo, const IntensiveQuantities &insideIntQuants, unsigned globalSpaceIdx)
Definition: blackoillocalresidualtpfa.hh:534
static void computeBoundaryFluxRate(RateVector &bdyFlux, const BoundaryConditionData &bdyInfo)
Definition: blackoillocalresidualtpfa.hh:527
static FaceDir::DirEnum faceDirFromDirId(const int dirId)
Definition: blackoillocalresidualtpfa.hh:854
static void computeSource(RateVector &source, const Problem &problem, unsigned globalSpaceIdex, unsigned timeIdx)
Definition: blackoillocalresidualtpfa.hh:678
static void evalPhaseFluxes_(RateVector &flux, unsigned phaseIdx, unsigned pvtRegionIdx, const ExtensiveQuantities &extQuants, const FluidState &upFs)
Definition: blackoillocalresidualtpfa.hh:736
static void computeFlux(RateVector &flux, const ElementContext &elemCtx, unsigned scvfIdx, unsigned timeIdx)
Definition: blackoillocalresidualtpfa.hh:260
static void computeStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoillocalresidualtpfa.hh:152
static void computeFlux(RateVector &flux, RateVector &darcy, const unsigned globalIndexIn, const unsigned globalIndexEx, const IntensiveQuantities &intQuantsIn, const IntensiveQuantities &intQuantsEx, const ResidualNBInfo &nbInfo, const ModuleParams &moduleParams)
Definition: blackoillocalresidualtpfa.hh:234
static void computeBoundaryThermal(const Problem &problem, RateVector &bdyFlux, const BoundaryConditionData &bdyInfo, const IntensiveQuantities &insideIntQuants, unsigned globalSpaceIdx)
Definition: blackoillocalresidualtpfa.hh:644
static void adaptMassConservationQuantities_(Dune::FieldVector< Scalar, numEq > &container, unsigned pvtRegionIdx)
Helper function to convert the mass-related parts of a Dune::FieldVector that stores conservation qua...
Definition: blackoillocalresidualtpfa.hh:825
static void evalPhaseFluxes_(RateVector &flux, unsigned phaseIdx, unsigned pvtRegionIdx, const Eval &surfaceVolumeFlux, const FluidState &upFs)
Helper function to calculate the flux of mass in terms of conservation quantities via specific fluid ...
Definition: blackoillocalresidualtpfa.hh:753
void computeStorage(Dune::FieldVector< LhsEval, numEq > &storage, const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx) const
Evaluate the amount all conservation quantities (e.g. phase mass) within a finite sub-control volume.
Definition: blackoillocalresidualtpfa.hh:141
static void calculateFluxes_(RateVector &flux, RateVector &darcy, const IntensiveQuantities &intQuantsIn, const IntensiveQuantities &intQuantsEx, const unsigned &globalIndexIn, const unsigned &globalIndexEx, const ResidualNBInfo &nbInfo, const ModuleParams &moduleParams)
Definition: blackoillocalresidualtpfa.hh:325
static void computeSourceDense(RateVector &source, const Problem &problem, unsigned globalSpaceIdex, unsigned timeIdx)
Definition: blackoillocalresidualtpfa.hh:697
Contains the high level supplements required to extend the black oil model by MICP.
Definition: blackoilmicpmodules.hh:56
static void addSource(RateVector &source, const ElementContext &elemCtx, unsigned dofIdx, unsigned timeIdx)
Definition: blackoilmicpmodules.hh:300
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilmicpmodules.hh:240
Contains the high level supplements required to extend the black oil model by polymer.
Definition: blackoilpolymermodules.hh:61
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilpolymermodules.hh:473
Contains the high level supplements required to extend the black oil model by solvents.
Definition: blackoilsolventmodules.hh:69
static void addStorage(Dune::FieldVector< LhsEval, numEq > &storage, const IntensiveQuantities &intQuants)
Definition: blackoilsolventmodules.hh:431
Definition: blackoilboundaryratevector.hh:37
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:235
Definition: blackoillocalresidualtpfa.hh:133
ConvectiveMixingModuleParam convectiveMixingModuleParam
Definition: blackoillocalresidualtpfa.hh:134
Definition: blackoillocalresidualtpfa.hh:119
FaceDir::DirEnum faceDir
Definition: blackoillocalresidualtpfa.hh:124
double dispersivity
Definition: blackoillocalresidualtpfa.hh:130
double faceArea
Definition: blackoillocalresidualtpfa.hh:121
double inAlpha
Definition: blackoillocalresidualtpfa.hh:127
double dZg
Definition: blackoillocalresidualtpfa.hh:123
double Vin
Definition: blackoillocalresidualtpfa.hh:125
double outAlpha
Definition: blackoillocalresidualtpfa.hh:128
double thpres
Definition: blackoillocalresidualtpfa.hh:122
double trans
Definition: blackoillocalresidualtpfa.hh:120
double Vex
Definition: blackoillocalresidualtpfa.hh:126
double diffusivity
Definition: blackoillocalresidualtpfa.hh:129