Opm::TpfaLinearizer< TypeTag > Class Template Reference The common code for the linearizers of non-linear systems of equations. More...
Detailed Descriptiontemplate<class TypeTag> class Opm::TpfaLinearizer< TypeTag > The common code for the linearizers of non-linear systems of equations. This class assumes that these system of equations to be linearized are stemming from models that use an finite volume scheme for spatial discretization and an Euler scheme for time discretization. Constructor & Destructor Documentation◆ TpfaLinearizer()
template<class TypeTag >
◆ ~TpfaLinearizer()
template<class TypeTag >
Member Function Documentation◆ constraintsMap()
template<class TypeTag >
Returns the map of constraint degrees of freedom. (This object is only non-empty if the EnableConstraints property is true.) ◆ eraseMatrix()
template<class TypeTag >
Causes the Jacobian matrix to be recreated from scratch before the next iteration. This method is usally called if the sparsity pattern has changed for some reason. (e.g. by modifications of the grid or changes of the auxiliary equations.) Referenced by Opm::TpfaLinearizer< TypeTag >::init(). ◆ finalize()
template<class TypeTag >
◆ getFloresInfo()
template<class TypeTag >
Return constant reference to the floresInfo. (This object is only non-empty if the FLORES keyword is true.) ◆ getFlowsInfo()
template<class TypeTag >
Return constant reference to the flowsInfo. (This object is only non-empty if the FLOWS keyword is true.) ◆ getLinearizationType()
template<class TypeTag >
◆ getVelocityInfo()
template<class TypeTag >
Return constant reference to the velocityInfo. (This object is only non-empty if the DISPERC keyword is true.) ◆ init()
template<class TypeTag >
Initialize the linearizer. At this point we can assume that all objects in the simulator have been allocated. We cannot assume that they are fully initialized, though. References Opm::TpfaLinearizer< TypeTag >::eraseMatrix(). ◆ jacobian() [1/2]
template<class TypeTag >
◆ jacobian() [2/2]
template<class TypeTag >
Return constant reference to global Jacobian matrix backend. ◆ linearize()
template<class TypeTag >
Linearize the full system of non-linear equations. The linearizationType() controls the scheme used and the focus time index. The default is fully implicit scheme, and focus index equal to 0, i.e. current time (end of step). This linearizes the spatial domain and all auxiliary equations. References Opm::TpfaLinearizer< TypeTag >::linearizeAuxiliaryEquations(), and Opm::TpfaLinearizer< TypeTag >::linearizeDomain(). ◆ linearizeAuxiliaryEquations()
template<class TypeTag >
Linearize the part of the non-linear system of equations that is associated with the spatial domain. References Opm::Simulator< TypeTag >::gridView(). Referenced by Opm::TpfaLinearizer< TypeTag >::linearize(). ◆ linearizeDomain() [1/2]
template<class TypeTag >
Linearize the part of the non-linear system of equations that is associated with the spatial domain. That means that the global Jacobian of the residual is assembled and the residual is evaluated for the current solution. The current state of affairs (esp. the previous and the current solutions) is represented by the model object. References Opm::Simulator< TypeTag >::gridView(), and Opm::TpfaLinearizer< TypeTag >::linearizeDomain(). Referenced by Opm::TpfaLinearizer< TypeTag >::linearize(), and Opm::TpfaLinearizer< TypeTag >::linearizeDomain(). ◆ linearizeDomain() [2/2]
template<class TypeTag >
template<class SubDomainType >
Linearize the part of the non-linear system of equations that is associated with a part of the spatial domain. That means that the Jacobian of the residual is assembled and the residual is evaluated for the current solution, on the domain passed in as argument. The current state of affairs (esp. the previous and the current solutions) is represented by the model object. References Opm::TpfaLinearizer< TypeTag >::linearizeDomain(), and Opm::TpfaLinearizer< TypeTag >::resetSystem_(). ◆ registerParameters()
template<class TypeTag >
Register all run-time parameters for the Jacobian linearizer. ◆ resetSystem_()
template<class TypeTag >
template<class SubDomainType >
Referenced by Opm::TpfaLinearizer< TypeTag >::linearizeDomain(). ◆ residual() [1/2]
template<class TypeTag >
◆ residual() [2/2]
template<class TypeTag >
Return constant reference to global residual vector. ◆ setLinearizationType()
template<class TypeTag >
◆ setResAndJacobi()
template<class TypeTag >
◆ updateBoundaryConditionData()
template<class TypeTag >
◆ updateDiscretizationParameters()
template<class TypeTag >
◆ updateFlowsInfo()
template<class TypeTag >
References Opm::Simulator< TypeTag >::problem(). The documentation for this class was generated from the following file: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||